JOURNAL BROWSE
Search
Advanced SearchSearch Tips
p-ADIC q-HIGHER-ORDER HARDY-TYPE SUMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
p-ADIC q-HIGHER-ORDER HARDY-TYPE SUMS
SIMSEK YILMAZ;
  PDF(new window)
 Abstract
The goal of this paper is to define p-adic Hardy sums and p-adic q-higher-order Hardy-type sums. By using these sums and p-adic q-higher-order Dedekind sums, we construct p-adic continuous functions for an odd prime. These functions contain padic q-analogue of higher-order Hardy-type sums. By using an invariant p-adic q-integral on , we give fundamental properties of these sums. We also establish relations between p-adic Hardy sums, Bernoulli functions, trigonometric functions and Lambert series.뮧ヨ⨀ヨ⨀徭ヨ⨀䥺֗⨀큾֗⨀뺀֗⨀ヨ⨀띲֗⨀뉻֗⨀֗⨀ᆰヨ⨀֗⨀襵֗⨀뺭ヨ⨀嚁֗⨀覢ヨ⨀좮ヨ⨀湸֗⨀ᦦヨ⨀�֗⨀⊥ヨ⨀멸֗⨀璄֗⨀ڦヨ⨀ヨ⨀깳֗⨀ቾ֗⨀敹֗⨀퍱֗⨀Ңヨ⨀솠ヨ⨀蝱֗⨀㞩ヨ⨀놦ヨ⨀嚮ヨ⨀乱֗⨀䉿֗⨀왽֗⨀ﲤヨ⨀具֗⨀㽹֗⨀뾯ヨ⨀֗⨀ꎃ֗⨀劦ヨ⨀蚂֗⨀䲀֗⨀潺֗⨀㵵֗⨀䂨ヨ⨀ギヨ⨀֗⨀貨ヨ⨀흹֗⨀㡾֗⨀€֗⨀ⱹ֗⨀֗⨀邃֗⨀ᶁ֗⨀驱֗⨀ᆩヨ⨀�֗⨀㪯ヨ⨀슢ヨ⨀튂֗⨀⹽֗⨀֗⨀ﶦヨ⨀癵֗⨀䝶֗⨀筿֗⨀끷֗⨀犭ヨ⨀㙺֗⨀욪ヨ⨀㶢ヨ⨀䲭ヨ⨀嶩ヨ⨀坰֗⨀㦭ヨ⨀뾂֗⨀ヨ⨀ಅ֗⨀쉵֗⨀鲢ヨ⨀颭ヨ⨀ѵ֗⨀⭷֗⨀뚃֗⨀誤ヨ⨀靾֗⨀ᾅ֗⨀펄֗⨀᭽֗⨀⚀֗⨀扳֗⨀떁֗⨀캧ヨ⨀֗⨀᥹֗⨀녹֗⨀ヨ⨀➂֗⨀麦ヨ⨀猪ヨ⨀쒦ヨ⨀๶֗⨀횤ヨ⨀侠ヨ⨀鱵֗⨀ẃ֗⨀⥳֗⨀䒃֗⨀᩻֗⨀�֗⨀걯֗⨀汴֗⨀骄֗⨀辮ヨ⨀䆪ヨ⨀즃֗⨀뱼֗⨀䕲֗⨀趪ヨ⨀鍶֗⨀庫ヨ⨀뎪ヨ⨀ヨ⨀�֗⨀֗⨀梬ヨ⨀౲֗⨀⪢ヨ
 Keywords
Dedekind sums;p-adic Dedekind sums;generalized Dedeking sums;Hardy sums;Bernoulli polynomizls and functions;Lambert series p-adic q-higher order Dedekind sums;p-adic q-Bernoulli numbers;
 Language
English
 Cited by
1.
Special functions related to Dedekind-type DC-sums and their applications, Russian Journal of Mathematical Physics, 2010, 17, 4, 495  crossref(new windwow)
2.
q-Hardy–Berndt type sums associated with q-Genocchi type zeta and q-l-functions, Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 12, e377  crossref(new windwow)
 References
1.
T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17 (1950), 147-157 crossref(new window)

2.
T. M. Apostol, Theorems on Generalized Dedekind Sums, Pacific J. Math. 2 (1952), 1-9 crossref(new window)

3.
B. C. Berndt and L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta functions, SIAM J. Math. Anal. 15 (1984), no. 1, 143-150 crossref(new window)

4.
M. Cenkci, M. Can, and V. Kurt, Generalized Hardy sums, (preprint)

5.
U. Dieter, Cotangent sums, a futher generalization of Dedekind sums, J. Number Theory 18 (1984), 289-305 crossref(new window)

6.
T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329 crossref(new window)

7.
T. Kim, On p-adic q- Bernoulli numbers, J. Korean Math. Soc. 37 (2000), no. 1, 21-30

8.
T. Kim, A note on p-adic q-Dedekind sums, C. R. Acad. Bulgare Soc. 54 (2001), no. 10, 37-42

9.
T. Kim, q-Volkenborn integration, Russ. J. Math Phys. 9 (2002), no. 3, 288-299

10.
T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267

11.
T. Kim, Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math Phys. 11 (2004), 71-76

12.
T. Kim, p-adic q-integrals associated with the Changhee-Barnes' q-Bernoulli Polynomials, Integral Transform. Spec. Funct. 15 (2004), no. 5, 415-420 crossref(new window)

13.
T. Kim and H. S. Kim, Remark on p-adic q-Bernoulli numbers, Algebraic number theory (Hapcheon/Saga, 1996). Adv. Stud. Contemp. Math. (Pusan) 1 (1999), 127-136

14.
A. Kudo, On p-adic Dedekind Sums, Nagoya Math. J. 144 (1996), 155-170

15.
H. Rademacher and A. Whiteman, Theorems on Dedekind sums, Amer. J. Math. 63 (1941), 377-407 crossref(new window)

16.
K. H. Rosen and W. M. Snyder, p-adic Dedekind Sums, J. Reine Angew. Math. 361 (1985), 23-26

17.
Y. Simsek, Theorems on three-term relations for Hardy sums, Turkish J. Math. 22 (1998), no. 2, 153-162

18.
Y. Simsek, Relation between theta-function Hardy sums Eisenstein and Lambert series in the transformation formula of log $\eta_{g,h}$(z), J. Number Theory 99 (2003), no. 2, 338-360 crossref(new window)

19.
Y. Simsek, On generalized Hardy Sums $S_5$(h, k), Ukrain. Mat. Zh. 56 (2004), no. 10, 1434-1440; translation in Ukrainian Math. J. 56 (2004), no. 10, 1712-1719 (2005)

20.
Y. Simsek and Y. Cetinkaya, On p-adic Hardy sums, XV. National Mathe-matic Symposium (XV. Ulusal Matematik Sempozyumu), 4-7 September, Mer-sin(Turkey) (2002), 105-112

21.
R. Sitaramachandrarao, Dedekind and Hardy Sums, Acta Arith. 48 (1987), no. 4, 325-340