JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EINSTEIN SPACES AND CONFORMAL VECTOR FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EINSTEIN SPACES AND CONFORMAL VECTOR FIELDS
KIM DONG-SOO; KIM YOUNG HO; PARK SEONG-HEE;
  PDF(new window)
 Abstract
We study Riemannian or pseudo-Riemannian manifolds which admit a closed conformal vector field. Subject to the condition that at each point the set of conformal gradient vector fields spans a non-degenerate subspace of TpM, using a warped product structure theorem we give a complete description of the space of conformal vector fields on arbitrary non-Ricci flat Einstein spaces.
 Keywords
Einstein space;warped product;conformal vector field;
 Language
English
 Cited by
 References
1.
H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119-145 crossref(new window)

2.
K. L. Duggal and R. Sharma, Symmetries of spacetimes and Riemannian manifolds, Kluwer Academic Publishers, Dordrecht, 1999

3.
D. Eardley, J. Isenberg, J. Marsden, and V. Moncrief, Homothetic and conformal symmetries of solutions to Einstein's equations, Comm. Math. Phys. 106 (1986), 137-158 crossref(new window)

4.
D. Garfinkle and Q. Tian, Spacetimes with cosmological constant and a con-formal Killing field have constant curvature, Class. Quantum Grav. 4 (1987), 137-139 crossref(new window)

5.
W. D. Halford, Brinkmann's theorem in general relativity, Gen. Rel. Grav. 14 (1982), 1193-1195 crossref(new window)

6.
G. S. Hall, Symmetries and geometry in general relativity, Diff. Geom. Appl. 1 (1991), 35-45 crossref(new window)

7.
Y. Kerbrat, Transformations conformes des varietes pseudo-riemanniannes, J. Diff. Geom. 11 (1976), 547-571

8.
M. G. Kerckhove, Conformal transformations of pseudo-Riemannian Einstein manifolds, Thesis, Brown University (1988)

9.
M. G. Kerckhove, The structure of Einstein spaces admitting conformal motions, Class. Quantum Grav. 8 (1991), 819-825 crossref(new window)

10.
D. -S. Kim and Y. H. Kim, A characterization of space forms, Bull. Korean Math. Soc. 35 (1998), no. 4, 757-767

11.
D. -S. Kim and Y. H. Kim, Spaces of conformal vector fields on pseudo-Riemannian manifolds, J. Korean Math. Soc. 42 (2005), no. 3, 469-482 crossref(new window)

12.
D. -S. Kim, Y. H. Kim, S. -B. Kim, and S. -H. Park, Conformal vector fields and totally umbilic hypersurfaces of a pseudo-Riemannian space form, Bull. Korean Math. Soc. 39 (2002), no. 4, 671-680 crossref(new window)

13.
W. Kuhnel, Conformal transformations between Einstein spaces, In: Conformal Geometry, Kulkarni, R. S. and Pinkal, U. Ed., Aspects Math. E12 (1988), Vieweg, Braunschweig, 105-146

14.
W. Kuhnel and H. B. Rademacher, Twistor spinors with zeros, Int. J. Math. 5 (1994), 877-895 crossref(new window)

15.
W. Kuhnel and H. B. Rademacher, Conformal vector fields on pseudo-Riemannian spaces, Diff. Geom. Appl. 7 (1997), 237-250 crossref(new window)

16.
W. Kuhnel and H. B. Rademacher, Essential conformal fields in pseudo-Riemannian geometry, J. Math. Pures Appl. (9) 74 (1995), 453-481

17.
B. T. McInnes, Brinkmann's theorem in general relativity and non-Riemannian field theories, Gen. Rel. Grav. 12 (1980), 767-773 crossref(new window)

18.
B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983

19.
P. Penrose and W. Rindler, Spinors and space time, Vol. 1,2, Cambridge Monograph in Math. Physics, 1986

20.
H. B. Rademacher, Generalized Killing Spinors with imaginary Killing function and conformal Killing fields,, In: Global differential geometry and global analysis(Berlin, 1990), Lecture Notes in Math. 1481, Springer, Berlin, 1991, 192-198 crossref(new window)

21.
R. Sharma and K. L. Duggal, A characterization of affine conformal vector field, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), 201-205

22.
K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957