JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GRAPH REPRESENTATIONS OF NORMAL MATRICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GRAPH REPRESENTATIONS OF NORMAL MATRICES
LEE SANG-GU; SEOL HAN-GUK;
  PDF(new window)
 Abstract
We call the bipartite graph G is normal provided the reduced adjacency matrix A of G is normal. In this paper we give graph representations of normal matrices. In addition we shall have the characterization of signed bipartite normal graphs.
 Keywords
normal matrix;bipartite graph;reduced adjacency matrix;co-degree;
 Language
English
 Cited by
 References
1.
R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, Cambridge university Press, Cambridge, 1991

2.
I. Csiszar, J. Korner, L. Lovasz, K. Marton, and G. Simonyi, Entropy splitting for antiblocking corners and perfect graphs, Combinatorica 10 (1990), no. 1, 27-40 crossref(new window)

3.
R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, Normal matrices, Linear Algebra Appl. 87 (1987), 213-225 crossref(new window)

4.
Z. Li, F. Hall, and F. Zhang, Sign patterns of nonnegative normal matrices, Linear Algebra Appl. 254 (1997), 335-354 crossref(new window)

5.
F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953-54), 143-146(1955)

6.
J. Korner and G. Longo, Two-step encoding of finite sources, IEEE Trans. Information Theory IT-19 (1973), 778-782

7.
B. Y. Wang and F. Zhang, On normal matrices of zeros and ones with fixed row sum, Linear Algebra Appl. 275/276 (1998), 617-626 crossref(new window)

8.
J. H. Yan, K. W. Lih, D. Kuo, and G. J. Chang, Signed degree sequences of signed graphs, J. Graph Theory 26 (1997), no. 2, 111-117 crossref(new window)