JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PARTIALLY ASHPHERICAL MANIFOLDS WITH NONZERO EULER CHARACTERISTIC AS PL FIBRATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PARTIALLY ASHPHERICAL MANIFOLDS WITH NONZERO EULER CHARACTERISTIC AS PL FIBRATORS
Im, Young-Ho; Kim, Yong-Kuk;
  PDF(new window)
 Abstract
Approximate fibrations form a useful class of maps. By definition fibrators provide instant detection of maps in this class, and PL fibrators do the same in the PL category. We show that every closed s-hopfian t-aspherical manifold N with sparsely Abelian, hopfian fundamental group and X(N) 0 is a codimension-(t + 1) PL fibrator.
 Keywords
approximate filbration;degree of a map;codimension-k fibrator;m-fibrator;Hopfian manifold;normally cohopfian;sparsely Abelian;
 Language
English
 Cited by
1.
SOME MANIFOLDS WITH NONZERO EULER CHARACTERISTIC AS PL FIBRATORS,;

호남수학학술지, 2007. vol.29. 3, pp.327-339 crossref(new window)
1.
SOME MANIFOLDS WITH NONZERO EULER CHARACTERISTIC AS PL FIBRATORS, Honam Mathematical Journal, 2007, 29, 3, 327  crossref(new windwow)
 References
1.
D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), no. 2, 275-288 crossref(new window)

2.
R. J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989), no. 2, 173-184 crossref(new window)

3.
R. J. Daverman, PL maps with manifold fibers, J. London Math. Soc. (2) 45 (1992), no. 1, 180-192 crossref(new window)

4.
R. J. Daverman, Manifolds that induce approximate fibrations in the PL category, Topology Appl. 66 (1995), no. 3, 267-297 crossref(new window)

5.
R. J. Daverman, Real projective spaces are nonfibrators, Special issue in memory of B. J. Ball. Topology Appl. 94 (1999), no. 1-3, 61-66 crossref(new window)

6.
R. J. Daverman, Y. H. Im, and Y. Kim, Connected sums of 4-manifolds as codimension-k fibrators, J. London Math. Soc. (2) 68 (2003), no. 1-2, 206-222 crossref(new window)

7.
Y. H. Im and Y. Kim, Hopfian and strongly hopfian manifolds, Fund. Math. 159 (1999), no. 2, 127-134

8.
Y. Kim, Strongly Hopfian manifolds as codimension-2 fibrators, Topology Appl. 92 (1999), no. 3, 237-245 crossref(new window)

9.
Y. Kim, Connected sums of manifolds which induce approximate fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1497-1506

10.
J. Milnor, Infinite cyclic coverings, 1968 Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) pp. 115-133 Prindle, Weber & Schmidt, Boston, Mass

11.
S. Rosset, A vanishing theorem for Euler characteristics, Math. Z. 185 (1984), no. 2, 211-215 crossref(new window)

12.
E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London 1966