JOURNAL BROWSE
Search
Advanced SearchSearch Tips
UNIFORM ASYMPTOTICS IN THE EMPIRICAL MEAN RESIDUAL LIFE PROCESS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
UNIFORM ASYMPTOTICS IN THE EMPIRICAL MEAN RESIDUAL LIFE PROCESS
Bae, Jong-Sic; Kim, Sung-Yeun;
  PDF(new window)
 Abstract
In [5], Csorgo and Zitikis exposed the strong consistency, and weak approximation of the empirical mean residual life process by employing weight functions. We carry on the uniform asymptotic behaviors of the empirical mean residual life process over the whole positive half line by representing the process as an integral form. We compare our results with those of Yang [15], Hall and Wellner [8], and Csorgo and Zitikis [5].
 Keywords
empirical mean residual life process;uniform law of large numbers;uniform central limit theorem;uniform law of the iterated logarithm;
 Language
English
 Cited by
1.
Life expectancy of a bathtub shaped failure distribution, Statistical Papers, 2010, 51, 3, 599  crossref(new windwow)
2.
On the Nonparametric Mean Residual Life Estimator in Length-biased Sampling, Communications in Statistics - Theory and Methods, 2015, 44, 3, 512  crossref(new windwow)
 References
1.
J. Bae and S. Kim, The uniform law of large numbers for the Kaplan-Meier integral process, Bull. Austral. Math. Soc. 67 (2003), no. 3, 459-465 crossref(new window)

2.
J. Bae and S. Kim, The uniform central limit theorem for the Kaplan-Meier integral process, Bull. Austral. Math. Soc. 67 (2003), no. 3, 467-480 crossref(new window)

3.
J. Bae and S. Kim, The empirical LIL for the Kaplan-Meier integral process, Bull. Korean Math. Soc. 40 (2003), no. 2, 269-279 crossref(new window)

4.
F. P. Cantelli, Bulla determinazione empirica delle leggi di probabilita, Giornale dell'lstituto Italiano degli Attuari. 4 (1933), 421-424

5.
M. Csorgo and R. Zitikis, Mean residual life processes, Ann. Statist. 24 (1996), no. 4, 1717-1739 crossref(new window)

6.
M. D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc. 6 (1951), 1-12

7.
V. Glivenko, Sulla determinazione empirica della leggi di probabilita, Giornale dell'lstituto Italiano degli Attuari. 4 (1933), 92-99

8.
W. J. Hall and J. A. Wellner, Estimation of Mean Residual Life, Unpublished Maunscript. University of Rochester 1979

9.
M. Ossiander, A central limit theorem under metric entropy with $L_2$ bracketing, Ann. Probab. 15 (1987), no. 3, 897-919 crossref(new window)

10.
D. Pollard, Empirical Processes: Theory and Applications, Inst. Math. Statist., Hayward, CA 1990

11.
V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211-226 crossref(new window)

12.
W. Stute, The central limit theorem under random censorship, Ann. Statist. 23 (1995), no. 2, 422-439 crossref(new window)

13.
W. Stute and J. L. Wang, The strong law under random censorship, Ann. Statist. 21 (1993), no. 3, 1591-1607 crossref(new window)

14.
A. W. Van der Vaart and J. A. Wellner, Weak convergence and empirical processes. With applications to statistics, Springer-Verlag, New York, 1996

15.
G. L. Yang, Estimation of a biometric function, Ann. Statist. 6 (1978), no. 1, 112-116 crossref(new window)