JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INVEXITY AS NECESSARY OPTIMALITY CONDITION IN NONSMOOTH PROGRAMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INVEXITY AS NECESSARY OPTIMALITY CONDITION IN NONSMOOTH PROGRAMS
Sach, Pham-Huu; Kim, Do-Sang; Lee, Gue-Myung;
  PDF(new window)
 Abstract
This paper gives conditions under which necessary optimality conditions in a locally Lipschitz program can be expressed as the invexity of the active constraint functions or the type I invexity of the objective function and the constraint functions on the feasible set of the program. The results are nonsmooth extensions of those of Hanson and Mond obtained earlier in differentiable case.
 Keywords
necessary optimality conditions;locally Lipschitz program;invexity;type I invexity;system of sublinear inequalities;
 Language
English
 Cited by
1.
Second-order invex functions in nonlinear programming, Optimization, 2012, 61, 5, 489  crossref(new windwow)
2.
Optimality and duality in vector optimization involving generalized type I functions over cones, Journal of Global Optimization, 2011, 49, 1, 23  crossref(new windwow)
 References
1.
A. Ben-Israel and B. Mond, What is invexity-, J. Austral. Math. Soc. Ser. B 28 (1986), no. 1, 1-9 crossref(new window)

2.
F. H. Clarke, Optimization and nonsmooth analysis, John Wiley & Sons, Inc., New York, 1983

3.
B. D. Craven, Nondifferentiable optimization by smooth approximations, Optimization 17 (1986), no. 1,3-17 crossref(new window)

4.
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), no. 2, 545-550 crossref(new window)

5.
M. A. Hanson, Invexity and the Kuhn-Tucker theorem, J. Math. Anal. Appl. 236 (1999), no. 2, 595-604

6.
M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Math. Programming 37 (1987), no. 1, 51-58 crossref(new window)

7.
O. L. Mangasarian, Nonlinear programming, McGraw-Hill, New York, 1969

8.
D. H. Martin, The essence of invexity, J. Optim. Theory Appl. 47 (1985), no. 1, 65-76 crossref(new window)

9.
R. R. Merkovsky and D. E. Ward, General constraint qualifications in nondifferentiable programming, Math. Programming 47 (1990), no. 3, (Ser. A), 389-405 crossref(new window)

10.
R. Osuna-Gomez, A. Rufian-Lizana, and P. Ruiz-Canales, Invex functions and generalized convexity in multiobjeetive programming, J. Optim. Theory Appl. 98 (1998), no. 3, 651-66l crossref(new window)

11.
T. W. Reiland, Nonsmooth invexity, Bull. Austral. Math. Soc. 42 (1990), no. 3, 437-446 crossref(new window)

12.
R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970

13.
P. H. Sach, G. M. Lee, and D. S. Kim, Infine functions, nonsmooth alternative theorems and vector optimization problems, J. Global Optim. 27 (2003), no. 1, 51-81 crossref(new window)

14.
P. H. Sach, G. M. Lee, and D. S. Kim, Efficiency and generalised convexity in vector optimization problems, ANZIAM J. 45 (2004), 523-546 crossref(new window)