JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE BOUNDEDNESS OF SOME BILINEAR SINGULAR INTEGRAL OPERATORS ON BESOV SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE BOUNDEDNESS OF SOME BILINEAR SINGULAR INTEGRAL OPERATORS ON BESOV SPACES
Xu Ming;
  PDF(new window)
 Abstract
In this paper we weaken the kernel conditions of bilinear Calderon-Zygmund operators and prove boundedness on Besov spaces.
 Keywords
bilinear operators;Besov spaces;
 Language
English
 Cited by
1.
The boundedness of bilinear singular integral operators on Sierpinski gaskets, Analysis in Theory and Applications, 2011, 27, 1, 92  crossref(new windwow)
 References
1.
R. Coifman and Y. Meyer,On commutators of singular integrals and bilinear sin- gular integrals, Trans. Amer. Math. Soc. 212 (1975), 315-331 crossref(new window)

2.
R. Coifman and Y. Meyer, Commutateurs d'integrales singuliµers et operateurs multiline aires, Ann. Inst. Fourier. Grenoble. 28 (1978), no. 3, xi, 177-202 crossref(new window)

3.
R. Coifman and Y. Meyer, Au delµa des Operateurs pseudo-differentiels, Asterisque 57 (1978)

4.
G. David and J. L. Journe, A boundedness criterion for generalized Calderon- Zygmund operators, Ann. of Math. 120 (1984), no. 2, 371-397 crossref(new window)

5.
M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Func. Anal. 93 (1990), 34-170 crossref(new window)

6.
L. Grafakos and R. H. Torres, On multilinear singular integrals of Caderon- Zygmund type, Publ. Mat. Vol. extra (2002), 57-91

7.
L. Grafakos and R. H. Torres, Multilinear singular integrals of Caderon-Zygmund theory, Advances. in Mathematics 165 (2002), 124-164 crossref(new window)

8.
L. Grafakos and R. H. Torres, Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Amer. Math. Soc. 354 (2002), no. 3, 1153-1176 crossref(new window)

9.
L. Grafakos and R. H. Torres, Maximal operators and weighted norm inequalities for multilinear singular integrals, Indiana. Univ. Math. J. 51 (2002), no. 5, 1261-1276 crossref(new window)

10.
Y. S. Han, Inhomogeneous Calderon reproducing formula on spaces of homoge- neous type, J. Geom. Anal. 7 (1997), no. 2, 259-284 crossref(new window)

11.
Y. S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc. 337 (1993), 839-853

12.
Y. S. Han, S. Z. Lu, and D. C. Yang, Inhomogeneous Besov and Triebel-Lizorkinspaces on spaces of homogeneous type, Approx. Theory. Appl. 15 (1999), no. 3, 37-65

13.
M. Lacey and C. Thiele, $L^p$ estimates on the bilinear Hilbert transform, 2 < p < $\infty$, Ann. of Math. 146 (1997), no. 3, 693{724 crossref(new window)

14.
M. Lacey and C. Thiele, On Calderon's conjecture, Ann. of Math. 149 (1999), no. 2, 475-496 crossref(new window)