JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TOPOLOGICAL ENTROPY OF A SEQUENCE OF MONOTONE MAPS ON CIRCLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TOPOLOGICAL ENTROPY OF A SEQUENCE OF MONOTONE MAPS ON CIRCLES
Zhu Yuhun; Zhang Jinlian; He Lianfa;
  PDF(new window)
 Abstract
In this paper, we prove that the topological entropy of a sequence of equi-continuous monotone maps on circles is . As applications, we give the estimation of the entropies for some skew products on annular and torus. We also show that a diffeomorphism f on a smooth 2-dimensional closed manifold and its extension on the unit tangent bundle have the same entropy.Ā搀會Ā搀肔�⨀烈ĀĀĀ會ĀĀ𵎖⨀䁩ĀĀĀ會ĀĀゕ�⨀预烈ЀĀЀ會ĀЀ袕�⨀㢅烈Ā؀會Ā؀�⨀�烈ࠀĀࠀ會Āࠀ㢖�⨀ạऀĀ᐀會Ā᐀邖�⨀䢫ạᄀĀ저會Ā저�⨀炆烈ఀĀ᐀會Ā᐀䂗�⨀ࢇ烈ఀĀ᐀會Ā᐀颗�⨀킈烈瀀ꀏ會Ā�⨀ạऀĀ᐀會Ā᐀䢘�⨀碬ạĀ㰀
 Keywords
sequence of continuous maps;topological entropy;separated set;spanning set;
 Language
English
 Cited by
1.
ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS,;;;;

대한수학회지, 2012. vol.49. 1, pp.165-185 crossref(new window)
1.
Directional entropy of ℤ+k-actions, Stochastics and Dynamics, 2016, 16, 01, 1650004  crossref(new windwow)
2.
On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems, Bulletin of the Brazilian Mathematical Society, New Series, 2017  crossref(new windwow)
3.
Lower bounds of the topological entropy for nonautonomous dynamical systems, Applied Mathematics-A Journal of Chinese Universities, 2009, 24, 1, 76  crossref(new windwow)
4.
Estimations of topological entropy for non-autonomous discrete systems, Journal of Difference Equations and Applications, 2016, 22, 3, 474  crossref(new windwow)
5.
ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS, Journal of the Korean Mathematical Society, 2012, 49, 1, 165  crossref(new windwow)
6.
Metric Entropy of Nonautonomous Dynamical Systems, Nonautonomous Dynamical Systems, 2014, 1, 1  crossref(new windwow)
7.
Fractal entropy of nonautonomous systems, Pacific Journal of Mathematics, 2013, 262, 2, 421  crossref(new windwow)
 References
1.
R. Adler, A. Konheim, and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319 crossref(new window)

2.
R. Bowen, Entropy for group endomorphisms and homogenuous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414 crossref(new window)

3.
E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems (Russian), Izv. Akad. Nauk. SSSR. Ser. Mat. 35 (1971), 324-366

4.
D. Fiebig, U. Fiebig, and Z. Nitecki, Entropy and preimage sets, Ergodic Theory Dynam. Systems 23 (2003), no. 6, 1785-1806 crossref(new window)

5.
F. -H. Lian and Z. -H. Wang, Topological entropy of monotone map on circle, J. Math. Resear. Expo. 16 (1996), no. 3, 379-382

6.
S. Kolyada, M. Misiurewicz, and L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on interval. Fund. Math. 160 (1999), 161-181

7.
S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-223

8.
S. -T. Liao, Qualitative theory of differentiable dynamical systems, The Science Press of China, Beijing, 1992

9.
M. Misiurewicz, On Bowen's definition of topological entropy, Discrete Contin. Dyn. Syst. 10 (2004), no. 3, 827-833 crossref(new window)

10.
M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studa Math. 67 (1980), no. 1, 45-63

11.
Z. Nitecki and F. Przytycki, Preimage entropy for mappings, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1815-1843 crossref(new window)

12.
P. Walters, An introduction to ergodic theory, Springer-Verlag, New York, Hei- delberg, Berlin, 1982

13.
Z. -S. Zhang, The principle of differentiable dynamical systems, The Science Press of China, Beijing, 1987