JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE MEASURE-VALUED DYSON SERIES AND ITS STABILITY THEOREM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE MEASURE-VALUED DYSON SERIES AND ITS STABILITY THEOREM
Ryu, Kun-Sik; Im, Man-Kyu;
  PDF(new window)
 Abstract
In this article, we establish the existence theorem for measure-valued Dyson series and show that it satisfies the Volterra-type integral equation. Furthermore, we prove the stability theorems for measure-valued Dyson series.
 Keywords
analogue of Wiener measure;Bartle integral;Dyson series;measure-valued Feynman-Kac formula;Volterra integral equation;stability theorem;
 Language
English
 Cited by
1.
THE SIMPLE FORMULA OF CONDITIONAL EXPECTATION ON ANALOGUE OF WIENER MEASURE,;

호남수학학술지, 2008. vol.30. 4, pp.723-732 crossref(new window)
2.
THE ROTATION THEOREM ON ANALOGUE OF WIENER SPACE,;;

호남수학학술지, 2007. vol.29. 4, pp.577-588 crossref(new window)
3.
EVALUATION E(exp(∫0th(s)dx(s)) ON ANALOGUE OF WIENER MEASURE SPACE,;

호남수학학술지, 2010. vol.32. 3, pp.441-451 crossref(new window)
4.
INTEGRATION WITH RESPECT TO ANALOGUE OF WIENER MEASURE OVER PATHS IN WIENER SPACE AND ITS APPLICATIONS,;

대한수학회보, 2010. vol.47. 1, pp.131-149 crossref(new window)
5.
AN INTEGRATION FORMULA FOR ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS,;

충청수학회지, 2010. vol.23. 4, pp.711-720
1.
THE SIMPLE FORMULA OF CONDITIONAL EXPECTATION ON ANALOGUE OF WIENER MEASURE, Honam Mathematical Journal, 2008, 30, 4, 723  crossref(new windwow)
2.
EVALUATION E(exp(∫0th(s)dx(s)) ON ANALOGUE OF WIENER MEASURE SPACE, Honam Mathematical Journal, 2010, 32, 3, 441  crossref(new windwow)
3.
THE ROTATION THEOREM ON ANALOGUE OF WIENER SPACE, Honam Mathematical Journal, 2007, 29, 4, 577  crossref(new windwow)
 References
1.
H. Bergstrom, Weak convergence of measures, Academic Press, 1982

2.
P. Billingsley, Convergence of probability measures, John Wiley & Sons, New York, 1968

3.
C. W. Burrill, Measure, integration and probability, McGraw-Hill, New York, 1972

4.
R. H. Cameron and D. A. Storvick, An operator-valued function space integral and a related integral equation, J. Math. Mech. 18 (1968), 517-552

5.
D. L. Cohn, Measure theory, Birkhauser, Boston, 1980

6.
J. Diestel and J. J. Uhl, Vector measures, Mathematical Survey, Amer. Math. Soc. Providence, 1977

7.
N. Dunford and J. T. Schwartz, Linear operators, part I, general theory, Pure and Applied Mathematics, Vol. VII, Wiley Interscience, New York, 1958

8.
P. R. Halmos, Measure theory, Springer-Verlag, New York, 1950

9.
E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1965

10.
G. W. Johnson and M. L. Lapidus, Generalized Dyson series, generalized Feyn- man diagrams, the Feynman integral and Feynman's operational calculus, Memoirs Amer. Math. Soc. 62 (1986), no. 351, 1-78

11.
G. W. Johnson and M. L. Lapidus, The Feynman integral and Feynman's operational calculus, Oxford Mathematical Monographs, Oxford Univ. Press, 2000

12.
I. Kluvanek, Operator valued measures and perturbations of semi-groups, Arch. Rational Mech. Anal. 81 (1983), no. 2, 161-180

13.
I. Kluvanek and G. Knowles, Vector measures and control systems, Math. Stud ies, no. 20, Amsterdam, North-Holland, 1975

14.
M. L. Lapidus, The Feynman-Kac formula with a Lebesgue-Stieltjes measure and Feynman's operational calculus, Stud. Appl. Math. 76 (1987), no. 2, 93-132

15.
M. L. Lapidus, Strong product integration of measures and the Feynman-Kac formula with a Lebesgue-Stieltjes measure, Rend. Circ. Math. Palermo (2) Suppl. No. 17 (1987), 271-312

16.
M. L. Lapidus, The Feynman-Kac formula with a Lebesgue-Stieltjes measure: An inte- gral equation in the general case, Integral Equations Operator Theory 12 (1989), no. 2, 163-210 crossref(new window)

17.
D. R. Lewis, Integration with respect to vector measure, Pacific J. Math. 33 (1970), no. 1, 157-165 crossref(new window)

18.
G. G. Okikiolu, Aspect of the theory of bounded linear operators in $L_p$ space, Academic Press, London, 1971

19.
K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967

20.
W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1987

21.
K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951 crossref(new window)

22.
K. S. Ryu and M. K. Im, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819 crossref(new window)

23.
C. Schwarz, Vector measures of bounded variation, Rev. Roum. Math. Pures. ET Appl Tome XVII (1972), no. 10, 1703-1704

24.
H. G. Tucker, A graduate course in probability, Academic Press, New York, 1967

25.
J. Yeh, Inversion of conditional expectations, Pacific J. Math. 52 (1974), no. 2, 631-640 crossref(new window)

26.
J. Yeh, Stochastic processes and the Wiener integral, Marcel Deckker, New York, 1973