JOURNAL BROWSE
Search
Advanced SearchSearch Tips
JORDAN AUTOMORPHIC GENERATORS OF EUCLIDEAN JORDAN ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
JORDAN AUTOMORPHIC GENERATORS OF EUCLIDEAN JORDAN ALGEBRAS
Kim, Jung-Hwa; Lim, Yong-Do;
  PDF(new window)
 Abstract
In this paper we show that the Koecher's Jordan automorphic generators of one variable on an irreducible symmetric cone are enough to determine the elements of scalar multiple of the Jordan identity on the attached simple Euclidean Jordan algebra. Its various geometric, Jordan and Lie theoretic interpretations associated to the Cartan-Hadamard metric and Cartan decomposition of the linear automorphisms group of a symmetric cone are given with validity on infinite-dimensional spin factors
 Keywords
Euclidean Jordan algebra;symmetric cone;Koecher's theorem;Jordan automorphism;global tubular neighborhood theorem;simultaneous diagonalization;Cartan decomposition;metric and spectral geometric mean;spin factor;
 Language
English
 Cited by
 References
1.
W. Bertram, The geometry of Jordan and Lie structures, Lecture Notes in Math- ematics, 1754. Springer-Verlag, Berlin, 2000

2.
J. Faraut and A. Koranyi, Analysis on symmetric cones, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford Univer- sity Press, New York, 1994

3.
L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z. 239 (2002), no. 1, 117-129 crossref(new window)

4.
L. Faybusovich and T. Tsuchiya, Primal-dual algorithms and infinite-dimen-sional Jordan algebras of finite rank, Math. Program. 97 (2003), no. 3, Ser. B, 471-493 crossref(new window)

5.
M. Fiedler and V. Ptak, A new positive definite geometric mean of two positive definite matrices, Linear Algebra Appl. 251 (1997), 1-20 crossref(new window)

6.
R. A. Hauser, Self-scaled barriers for semidefinite programming, Numerical Anal- ysis Report DAMTP 2000/NA02, Department of Applied Mathematics and The- oretical Physics, Silver Street, Cambridge, England CB3 9EW, March 2000

7.
R. A. Hauser and O. Guler, Self-scaled barrier functions on symmetric cones and their classification, Found. Comput. Math. 2 (2002), no. 2, 121-143 crossref(new window)

8.
R. A. Hauser and Y. Lim, Self-scaled barriers for irreducible symmetric cones, SIAM J. Optim. 12 (2002), no. 3, 715-723 crossref(new window)

9.
A. Kalliterakis, Estimations a l'infini des fonctions de Bessel associees aux repre- sentations d'une algebre de Jordan, J. Lie Theory 11 (2001), no. 2, 273-303

10.
W. Kaup, Jordan algebras and holomorphy, Functional analysis, holomorphy, and approximation theory, Lecture Notes in Math., 843, Springer, Berlin, 1981

11.
M. Koecher, The Minnesota notes on Jordan algebras and their applications, Edited, annotated and with a preface by Aloys Krieg and Sebastian Walcher, Lecture Notes in Mathematics, 1710. Springer-Verlag, Berlin, 1999

12.
B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. (4) 6 (1973), 413-455 (1974)

13.
O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, 805. Springer-Verlag, Berlin-New York, 1980

14.
S. Lang, Fundamentals of differential geometry, Graduate Texts in Mathematics, 191. Springer-Verlag, New York, 1999

15.
J. D. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly 108 (2001), no. 9, 797-812 crossref(new window)

16.
J. D. Lawson and Y. Lim, Means on dyadic symmetric sets and polar decompositions, Abh. Math. Sem. Univ. Hamburg 74 (2004), 135-150 crossref(new window)

17.
Y. Lim, Geometric means on symmetric cones, Arch. Math. (Basel) 75 (2000), no. 1, 39-45 crossref(new window)

18.
Y. Lim, Applications of geometric means on symmetric cones, Math. Ann. 319 (2001), no. 3, 457-468 crossref(new window)

19.
Y. Lim, Best approximation in Riemannian geodesic submanifolds of positive definite matrices, Canad. J. Math. 56 (2004), no. 4, 776-793 crossref(new window)

20.
Y. Lim, J. Kim, and L. Faybusovich, Simultaneous diagonalization on simple Euclidean Jordan algebras and its applications, Forum Math. 15 (2003), no. 4, 639-644 crossref(new window)

21.
K. -H. Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Geom. Dedicata 95 (2002), 115-156 crossref(new window)

22.
W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Dusseldorf-Johannesburg, 1973

23.
H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras, North- Holland Mathematics Studies, 104, North-Holland Publishing Co., Amsterdam, 1985