JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LINEAR PRESERVERS OF BOOLEAN NILPOTENT MATRICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LINEAR PRESERVERS OF BOOLEAN NILPOTENT MATRICES
Song, Seok-Zun; Kang, Kyung-Tae; Jun, Young-Bae;
  PDF(new window)
 Abstract
For an Boolean matrix A, A is called nilpotent if $A^m
 Keywords
Boolean algebra;nilpotent matrix;constituent;linear operator;
 Language
English
 Cited by
1.
선형보존자 문제들에 관한 연구,송석준;

대한수학회논문집, 2006. vol.21. 4, pp.595-612 crossref(new window)
1.
Primitive symmetric matrices and their preservers, Linear and Multilinear Algebra, 2016, 1  crossref(new windwow)
2.
Regular matrices and their strong preservers over semirings, Linear Algebra and its Applications, 2008, 429, 1, 209  crossref(new windwow)
3.
On linear operators strongly preserving invariants of Boolean matrices, Czechoslovak Mathematical Journal, 2012, 62, 1, 169  crossref(new windwow)
4.
Zero-term rank and zero-star cover number of symmetric matrices and their linear preservers, Linear and Multilinear Algebra, 2016, 64, 12, 2368  crossref(new windwow)
5.
The Invertible Linear Operator Preserving {1,2}-Inverses of Matrices over Semirings, Pure Mathematics, 2015, 05, 01, 8  crossref(new windwow)
 References
1.
L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77 crossref(new window)

2.
L. B. Beasley and N. J. Pullman, Operators that preserve semiring matrix functions, Linear Algebra Appl. 99 (1988), 199-216 crossref(new window)

3.
P. Botta, S. Pierce, and W. Watkins, Linear transformations that preserve the nilpotent matrices, Pacific J. Math. 104 (1983), no. 1, 39-46 crossref(new window)

4.
K. H. Kim, Boolean matrix theory and applications, Pure and Applied Mathemat ics, Vol. 70, Marcel Dekker, New York, 1982

5.
S. Kirkland and N. J. Pullman, Linear operators preserving invariants of non- binary matrices, Linear Multilinear Algebra 33 (1993), 295-300

6.
S. -Z. Song, L. B. Beasley, G. -S. Cheon, and Y. -B. Jun, Rank and perimeter preservers of Boolean rank-1 matrices, J. Korean Math. Soc. 41 (2004), no. 2, 397-406 crossref(new window)

7.
S. -Z. Song and S. -G. Lee, Column ranks and their preservers of general Boolean matrices, J. Korean Math. Soc. 32 (1995), no. 3, 531-540