JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A GENERALIZATION OF A RESULT OF CHOA ON ANALYTIC FUNCTIONS WITH HADAMARD GAPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A GENERALIZATION OF A RESULT OF CHOA ON ANALYTIC FUNCTIONS WITH HADAMARD GAPS
Stevic Stevo;
  PDF(new window)
 Abstract
In this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for $f(z)\;
 Keywords
analytic functions;Hadamard gap;Bergaman space;unit ball;
 Language
English
 Cited by
1.
A Theorem of Nehari Type on Weighted Bergman Spaces of the Unit Ball, Abstract and Applied Analysis, 2008, 2008, 1  crossref(new windwow)
2.
Bloch-type functions with Hadamard gaps, Applied Mathematics and Computation, 2009, 208, 2, 416  crossref(new windwow)
3.
Lacunary Series in Weighted HyperholomorphicBp,q(G) Spaces, Numerical Functional Analysis and Optimization, 2010, 32, 1, 41  crossref(new windwow)
4.
Integral-type operators between α-Bloch spaces and Besov spaces on the unit ball, Applied Mathematics and Computation, 2010, 216, 12, 3541  crossref(new windwow)
5.
Sharp inclusions and lacunary series in mixed-norm spaces on the polydisc, Complex Variables and Elliptic Equations, 2013, 58, 2, 185  crossref(new windwow)
6.
Weighted-Hardy functions with Hadamard gaps on the unit ball, Applied Mathematics and Computation, 2009, 212, 1, 229  crossref(new windwow)
7.
Some Sufficient Conditions for Analytic Functions to Belong to Space, Abstract and Applied Analysis, 2008, 2008, 1  crossref(new windwow)
8.
𝒩p-type functions with Hadamard gaps in the unit ball, Complex Variables and Elliptic Equations, 2016, 61, 6, 843  crossref(new windwow)
9.
Lacunary series in quaternion Bp,qspaces, Complex Variables and Elliptic Equations, 2009, 54, 7, 705  crossref(new windwow)
10.
On new Bloch-type spaces, Applied Mathematics and Computation, 2009, 215, 2, 841  crossref(new windwow)
11.
Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball, Applied Mathematics and Computation, 2009, 212, 2, 499  crossref(new windwow)
12.
On Bloch-Type Functions with Hadamard Gaps, Abstract and Applied Analysis, 2007, 2007, 1  crossref(new windwow)
 References
1.
F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 276 (1989), 1-57

2.
G. Benke and D. C. Chang, A note on weighted Bergman spaces and the Cesaro operator, Nagoya Math. J. 159 (2000), 25-43

3.
J. S. Choa, Some properties of analytic functions on the unit ball with Hadamard gaps, Complex Variables Theory Appl. 29 (1996), no. 3, 277-285 crossref(new window)

4.
P. Duren, Theory of $H^p$ spaces, Pure and Applied Mathematics Vol. 38, Academic Press, New York, 1970

5.
J. H. Mathews, Coefficients of uniformly normal-Bloch functions, Yokohama Math. J. 21 (1973), 29-31

6.
J. Miao, A property of analytic functions with Hadamard gaps, Bull. Austral. Math. Soc. 45 (1992), no. 1, 105-112 crossref(new window)

7.
W. Rudin, Function theory in the unit ball of $C^n$, Grundlehren der Mathematis- chen Wissenschaften, 241, Springer-Verlag, New York-Berlin, 1980

8.
J. -H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $C^n$, Trans. Amer. Math. Soc. 328 (1991), no. 2, 619-637 crossref(new window)

9.
A. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math. 66 (2000), 651-664

10.
S. Stevic, On an area inequality and weighted integrals of analytic functions, Result Math. 41 (2002), no. 3-4, 386-393 crossref(new window)

11.
S. Stevic, Weighted integrals and conjugate functions in the unit disk, Acta Sci. Math. 69 (2003), no. 1-2, 109-119

12.
S. Stevic, Weighted integrals of holomorphic functions on the polydisc, Z. Anal. Anwendungen 23 (2004), no. 3, 577-587

13.
S. Yamashita, Gap series and $\alpha$-Bloch functions, Yokohama Math. J. 28 (1980), no. 1-2, 31{36

14.
A. Zygmund, Trigonometric series, Cambridge University Press, London, 1959