JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE MONOTONY PROPERTIES OF GENERALIZED PROJECTION BODIES, INTERSECTION BODIES AND CENTROID BODIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE MONOTONY PROPERTIES OF GENERALIZED PROJECTION BODIES, INTERSECTION BODIES AND CENTROID BODIES
Yu, Wu-Yang; Wu, Dong-Hua;
  PDF(new window)
 Abstract
In this paper, we established the monotony properties of generalized projection bodies , intersection bodies and centroid bodies .
 Keywords
projection bodies;intersection bodies;centroid bodies;quermassintegrals;dual quermassintegrals;monotony properties;
 Language
English
 Cited by
1.
Intersection bodies and generalized cosine transforms, Advances in Mathematics, 2008, 218, 3, 696  crossref(new windwow)
 References
1.
G. D. Chakerian and E. Lutwak, Bodies with similar projections, Trans. Amer. Math. Soc. 349 (1997), no. 5, 1811-1820 crossref(new window)

2.
R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), no. 1, 435-445 crossref(new window)

3.
R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. 140 (1994), no. 2, 435-447 crossref(new window)

4.
R. J. Gardner, Geometric Tomography, Encyclopedia of Mathematics and its Applications 58, Cambridge University Press, Cambridge, 1995

5.
G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952

6.
S. Helgason, The Radon transform, Second edition, Progress in Mathematics, Vol. 5, Birkhauser, Boston, 1999

7.
K. Leichtweib, Konvexe mengen, Springer-Verlag, Berlin-New York, 1980

8.
E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531-538 crossref(new window)

9.
E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), no. 1, 91-105 crossref(new window)

10.
E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), no. 2, 232-261 crossref(new window)

11.
E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. 60 (1990), no. 3, 365-391

12.
E. Lutwak, On quermassintegrals of mixed projection bodies, Geometriae Dedicata, 33 (1990), no. 1, 51-58

13.
E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131-150

14.
E. Lutwak and G. Zhang, Blaschke-Santalo inequalities, J. Differential Geom. 47 (1997), no. 1, 1-16

15.
C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961), 1535-1547 crossref(new window)

16.
C. M. Petty, Projection bodies, in:'Proceedings of a Colloquium on Convexity', Co- qenhagen, 1965, 234-241, Kobenhavns Univ. Mat. Inst. 1967

17.
W. Rudin, Principles of mathematical analysis, McGraw-Hill Companies, Inc. 1976

18.
R. Schneider, Zur einem Problem von Shephard uber die Projektionen konvexer Korper, Math. Z. 101 (1967), 71-82 crossref(new window)

19.
R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1993

20.
G. C. Shephard, Shadow systems of convex bodies, Israel J. Math. 2 (1964), 229-236 crossref(new window)

21.
G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777-801 crossref(new window)

22.
G. Zhang, Sections of convex bodies, Amer. J. Math. 118 (1996), no. 2, 319-340 crossref(new window)

23.
G. Zhang, Dual kinematic formulas, Trans. Amer. Math. Soc. 351 (1999), no. 3, 985-995 crossref(new window)

24.
G. Zhang, A positive solution to the Busemann-Petty problem in $\mathbb{R}^4$, Ann. of Math. 149 (1999), no. 2, 535-543 crossref(new window)