JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BOUNDEDNESS OF MULTIPLE MARCINKIEWICZ INTEGRAL OPERATORS WITH ROUGH KERNELS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BOUNDEDNESS OF MULTIPLE MARCINKIEWICZ INTEGRAL OPERATORS WITH ROUGH KERNELS
Wu Huoxiong;
  PDF(new window)
 Abstract
This paper is concerned with giving some rather weak size conditions implying the boundedness of the multiple Marcin-kiewicz integrals for some fixed $1\;<\;p\;<\;{\infty}$, which essentially improve and extend some known results.
 Keywords
Marcinkiewicz integrals;rough kernel;Littlewood-Paley theory;boundedness;
 Language
English
 Cited by
1.
On multiple singular integrals along polynomial curves with rough kernels, Acta Mathematica Sinica, English Series, 2008, 24, 2, 177  crossref(new windwow)
2.
On the boundedness for the multiple Littlewood–Paley functions with rough kernels, Journal of Mathematical Analysis and Applications, 2014, 410, 1, 403  crossref(new windwow)
3.
Rough marcinkiewicz integrals associated to surfaces of revolution on product domains, Acta Mathematica Scientia, 2009, 29, 2, 294  crossref(new windwow)
4.
Rough Marcinkiewicz integrals with mixed homogeneity on product spaces, Acta Mathematica Sinica, English Series, 2013, 29, 7, 1231  crossref(new windwow)
5.
On rough Marcinkiewicz integrals along surfaces, Acta Mathematica Sinica, English Series, 2010, 26, 4, 717  crossref(new windwow)
6.
Rough Marcinkiewicz integrals along certain smooth curves, Frontiers of Mathematics in China, 2012, 7, 5, 857  crossref(new windwow)
7.
A note on the generalized Marcinkiewicz integral operators with rough kernels, Acta Mathematica Sinica, English Series, 2012, 28, 12, 2395  crossref(new windwow)
 References
1.
A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139 crossref(new window)

2.
J. Chen, Y. Ding, and D. Fan, $L^p$ boundedness of the rough Marcinkiewicz integral on product domains, Chinese J. Contemp. Math. 21 (2000), no. 1, 47-54

3.
J. Chen, Y. Ding, and D. Fan, Certain square functions on product spaces, Math. Nachr. 230 (2001), 5-18 crossref(new window)

4.
J. Chen, D. Fan, and Y. Ying, Rough Marcinkiewicz integrals with $L(log^+L)^2$ kernels on product spaces, Adv. Math. (China) 30 (2001), no. 2, 179-181

5.
J. Chen, D. Fan, and Y. Ying, The method of rotation and Marcinkiewicz integrals on product domains, Studia Math. 153 (2002), no. 1, 41-58 crossref(new window)

6.
S. Chanillo and R. L. Wheeden, Inequalities for Peano maximal functions and Marcinkiewicz integrals, Duke Math. J. 50 (1983), no. 3, 573-603 crossref(new window)

7.
S. Chanillo and R. L. Wheeden, Relations between Peano derivatives and Marcinkiewicz integrals, in: Con- ference on harmonic analysis in honor of Antoni Zygmund, Vols. I, II (Chicago, Ill., 1981), 508-525, Wadsworth Math. Ser. Wadsworth, 1983

8.
Y. Choi, Marcinkiewicz integrals with rough homogeneous kernels of degree zero in product domains, J. Math. Anal. Appl. 261 (2001), no. 1, 53-60 crossref(new window)

9.
Y. Ding, $L^2$-boundedness of Marcinkiewicz integral with rough kernel, Hokkaido Math. J. 27 (1998), no. 1, 105-115 crossref(new window)

10.
J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Gronble) 36 (1986), no. 4, 185-206 crossref(new window)

11.
R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), no. 2, 117-143 crossref(new window)

12.
L. Grafakos and A. Stefanov, $L^p$ bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), no. 2, 455-469

13.
G. Hu, S. Lu, and D. Yan, $L^p(\mathbb{R}^m\;\times\;\mathbb{R}^n)$ boundedness for the Marcinkiewicz integral on product spaces, Sci. China Ser. A 46 (2003), no. 1, 75-82 crossref(new window)

14.
L. Hormander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math. 104 (1960), 93-140 crossref(new window)

15.
M. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135 (1999), no. 2, 103-142

16.
S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), no. 2, 199-211 crossref(new window)

17.
E. M. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466 crossref(new window)

18.
E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integral, Princeton Univ. Press, Princeton, NJ, 1993

19.
E. M. Stein, Problems in harmonic analysis related to curvature and oscillatory integrals, Proc. Internat. Congr. Math., Berkeley (1986), 196-221

20.
E. M. Stein, Some geometrical concepts arising in harmonic analysis, Geom. Funct. Anal. Special Vol. (2000), 434-453

21.
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, New Jersey, 1970

22.
T. Walsh, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203-217

23.
H. Wu, On Marcinkiewicz integral operators with rough kernels, Integral Equations Operator Theory 52 (2005), no. 2, 285-298 crossref(new window)

24.
H. Wu, $L^p$ bounds for Marcinkiewicz integrals associated to surfaces of revolution, J. Math. Anal. Appl. (to appear)

25.
H. Wu, General Littlewood-Paley functions and singular integral operators on product spaces, Math. Nachr. 279 (2006), no. 4, 431-444 crossref(new window)

26.
Y. Ying, Investigations on some operators with rough kernels in harmonic anal- ysis, Ph. D. Thesis (in Chinese), Zhejiang Univ., Hangzhou, 2002