JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A SUBCLASS OF CERTAIN CONVEX HARMONIC FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A SUBCLASS OF CERTAIN CONVEX HARMONIC FUNCTIONS
Yalcin Sibel; Ozturk Metin;
  PDF(new window)
 Abstract
We define and investigate a subclass of complex valued harmonic convex functions that are univalent and sense preserving in the open unit disk. We obtain coefficient conditions, extreme points, distortion bounds, convolution conditions for the above family of harmonic functions.
 Keywords
harmonic;univalent;convex;
 Language
English
 Cited by
1.
On a Subclass of Harmonic Convex Functions of Complex Order, International Journal of Mathematics and Mathematical Sciences, 2012, 2012, 1  crossref(new windwow)
 References
1.
O. Altintas, O. Ozkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative Coefficients, Appl. Math. Lett. 13 (2000), no. 3, 63-67

2.
Y. Avc and E. Zlotkiewicz, On Harmonic Univalent Mappings, Annales Univer- sitatis Mariae Cruie Sklodowska Sectio A 44 (1990), 1-7

3.
J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25 crossref(new window)

4.
J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coeficients, Ann. Univ. Mariae Cruie-Sklodowska Sect. A 52 (1998), no. 2, 57-66

5.
J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), no. 2, 470-477 crossref(new window)

6.
St. Ruscheweyh, Neighborhoods of Univalent Functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527

7.
H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl. 220 (1998), no. 2, 283-289 crossref(new window)