JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE RATE OF COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF RANDOM ELEMENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE RATE OF COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF RANDOM ELEMENTS
Sung, Soo-Hak; Volodin Andrei I.;
  PDF(new window)
 Abstract
Let {} be an array of rowwise independent random elements which are stochastically dominated by a random variable X with $E\|X\|^{\frac{\alpha}{\gamma}+{\theta}}log^{\rho}(\|X\|)\;<\;{\infty}$ for some ${\rho}\;>\;0,\;{\alpha}\;>\;0,\;{\gamma}\;>\;0,\;{\theta}\;>\;0$ such that ${\theta}+{\alpha}/{\gamma}<2$. Let {) be an array of suitable constants. A complete convergence result is obtained for the weighted sums of the form .
 Keywords
arrays of random elements;rowwise independence;weighted sums;complete convergence;rate of convergence;convergence in probability;
 Language
English
 Cited by
1.
COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF RANDOM ELEMENTS,;

대한수학회보, 2010. vol.47. 2, pp.369-383 crossref(new window)
1.
A Note on the Rate of Complete Convergence for Weighted Sums of Arrays of Banach Space Valued Random Elements, Stochastic Analysis and Applications, 2011, 29, 2, 282  crossref(new windwow)
2.
Toeplitz Lemma, Complete Convergence and Complete Moment Convergence, Communications in Statistics - Theory and Methods, 2016, 0  crossref(new windwow)
3.
Complete moment convergence for weighted sums of arrays of Banach-space-valued random elements, Collectanea Mathematica, 2016, 67, 3, 363  crossref(new windwow)
4.
Complete moment convergence for i.i.d. random variables, Statistics & Probability Letters, 2014, 91, 76  crossref(new windwow)
5.
Some complete convergence results for row sums from arrays of rowwise independent random elements in Rademacher type p Banach spaces, Lobachevskii Journal of Mathematics, 2011, 32, 1, 71  crossref(new windwow)
6.
Complete convergence for weighted sums of arrays of banach-space-valued random elements*, Lithuanian Mathematical Journal, 2012, 52, 3, 316  crossref(new windwow)
7.
Complete moment convergence for weighted sums of sequences of independent random elements in Banach spaces, Collectanea Mathematica, 2014, 65, 2, 155  crossref(new windwow)
 References
1.
S. E. Ahmed, R. G. Antonini, and A. I. Volodin, On the rate of complete conver- gence for weighted sums of arrays of Banach space valued random elements with application to moving average processes, Statist. Probab. Lett. 58 (2002), no. 2, 185-194 crossref(new window)

2.
L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108-123 crossref(new window)

3.
P. Erdos, On a theorem of Hsu and Robbins, Ann. Math. Statistics 20 (1949), 286-291 crossref(new window)

4.
P. Erdos, Remark on my paper 'On a theorem of Hsu and Robbins', Ann. Math. Statistics 21 (1950), 138 crossref(new window)

5.
P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 25-31

6.
T.-C. Hu, D. Li, A. Rosalsky, and A. I. Volodin, On the rate of complete con- vergence for weighted sums of arrays of Banach space valued random elements, Theory Probab. Appl. 47 (2003), 455-468 crossref(new window)

7.
T.-C. Hu, A. Rosalsky, D. Szynal and A. I. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Anal. Appl. 17 (1999), no. 6, 963-992 crossref(new window)

8.
A. Kuczmaszewska and D. Szynal, On complete convergence in a Banach space, Internat. J. Math. Math. Sci. 17 (1994), no. 1, 1-14 crossref(new window)

9.
S. H. Sung, Complete convergence for weighted sums of arrays of rowwise in- dependent B-valued random variables, Stochastic Anal. Appl. 15 (1997), no. 2, 255-267 crossref(new window)

10.
A. Volodin, R. G. Antonini and T.-C. Hu, A note on the rate of complete con- vergence for weighted sums of arrays of Banach space valued random elements, Lobachevskii J. Math. (electronic) 15 (2004), 21-33

11.
X. Wang, M. B. Rao and X. Yang, Convergence rates on strong laws of large numbers for arrays of rowwise independent elements, Stochastic Anal. Appl. 11 (1993), no. 1, 115-132 crossref(new window)