JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LIMIT CYCLES IN A CUBIC PREDATOR-PREY DIFFERENTIAL SYSTEM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LIMIT CYCLES IN A CUBIC PREDATOR-PREY DIFFERENTIAL SYSTEM
Huang Xuncheng; Wang Yuanming; Cheng Ansheng;
  PDF(new window)
 Abstract
We propose a cubic differential system, which can be considered a generalization of the predator-prey models, studied by many authors recently (see [18, 20], for instance) The properties of the equilibrium points, the existences, nonexistence, the uniqueness conditions and the relative positions of the limit cycles are investigated. An example is used to show our theorems are easy to be used in applications.
 Keywords
cubic system;predator-prey;limit cycles;relative position;
 Language
English
 Cited by
1.
Multi-dynamics of travelling bands and pattern formation in a predator-prey model with cubic growth, Advances in Difference Equations, 2016, 2016, 1  crossref(new windwow)
2.
Limit cycles for two families of cubic systems, Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 18, 6402  crossref(new windwow)
3.
Stability and bifurcation in two species predator–prey models, Nonlinear Analysis: Real World Applications, 2011, 12, 1, 377  crossref(new windwow)
 References
1.
G. I. Bell, Predator-prey of equations simulating an immune response, Math. Bioscience 16 (1973), 291-314 crossref(new window)

2.
L. A. Cherkas and L. I. Zhilevich, Some test for the absence or uniqueness of limit cycles, Differencial nye Uravnenija 6 (1970), 1170-1178

3.
J. Cronin, Differential Equations, Introduction and Qualitative Theory, Marcel Dekker, New York, 1994

4.
L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), no. 3, 449-497 crossref(new window)

5.
X. C. Huang, Limit cycles in a continuous fermentation model, J. Math. Chem. 5 (1990), no. 3, 287-296 crossref(new window)

6.
X. C. Huang, Uniqueness of limit cycles in a predator-prey model simulating an im- mune response, Internat. J. Systems Sci. 22 (1991), no. 3, 579-585 crossref(new window)

7.
X. C. Huang and S. Merrill, Conditions for uniqueness of limit cycles in general predator-prey systems, Math. Biosci. 96 (1989), no. 1, 47-60 crossref(new window)

8.
X. Huang and L. Zhu, Limit cycles in a general Kolmogorov model, Nonlinear Anal. Theory 60 (2005), no. 8, 1393-1414 crossref(new window)

9.
X. Huang and L. Zhu, A study of a general Kolmogorov model, J. Yangzhou Polytechnic University 8 (2004), no. 1, 20-32

10.
Y. Ilyashanko and S. Yakovenko, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995

11.
E. Kuno, Mathematical models for predator-prey interaction, Advances in Eco- logical Research 16 (1987) 252-265

12.
B. Y. Li and Z. F. Zhang, A note on a result of G. S. Petrov about the weakened 16th Hilbert problem, J. Math. Anal. Appl. 190 (1995), no. 2, 489-516 crossref(new window)

13.
R. M. May, Limit cycles in predator-prey communities, Science 177 (1972) 900- 902 crossref(new window)

14.
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, Princeton, NJ, 1974

15.
S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, Math. Biosci. 182 (2003), no. 2, 151-166 crossref(new window)

16.
Y. X. Qian, On Integral Surfaces Defined by Ordinary Differential Equations, Northwest University press, Xian, 1985

17.
R. Roussaire, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Prob- lem, Springer-Verlag, New York, 1998

18.
C. Shen and B. Q. Shen, A necessary and sufficient condition of the existence and uniqueness of the limit cycles for a class of prey-predator system with spasrse effect, J. Biomath. 18 (2003), no. 2, 207-210

19.
Y. Q. Ye, S. L. Wang, and X. A. Yang, Theory of Limit Cycles, Amer. Math. Soc. Providence, R. I., 1986

20.
J. B. Zheng, Z. X. Yu, and J. T. Sun, Existence and uniqueness of limit cycle about prey-predator system with sparse effect, J. Biomath. 16 (2001), no. 2, 156- 161