JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON WEYL`S THEOREM FOR QUASI-CLASS A OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON WEYL`S THEOREM FOR QUASI-CLASS A OPERATORS
Duggal Bhagwati P.; Jeon, In-Ho; Kim, In-Hyoun;
  PDF(new window)
 Abstract
Let T be a bounded linear operator on a complex infinite dimensional Hilbert space . We say that T is a quasi-class A operator if . In this paper we prove that if T is a quasi-class A operator and f is a function analytic on a neigh-borhood or the spectrum or T, then f(T) satisfies Weyl`s theorem and f() satisfies a-Weyl`s theorem.
 Keywords
quasi-class A operators;Weyl`s theorem;a-Weyl`s theorem;a-Browder theorem;
 Language
English
 Cited by
1.
WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS,;

대한수학회지, 2008. vol.45. 3, pp.771-780 crossref(new window)
2.
WEYL'S THEOREM AND TENSOR PRODUCT FOR OPERATORS SATISFYING T*k|T2|Tk≥T*k|T|2Tk,;

대한수학회지, 2010. vol.47. 2, pp.351-361 crossref(new window)
1.
A Unifying Approach to Weyl Type Theorems for Banach Space Operators, Integral Equations and Operator Theory, 2013, 77, 3, 371  crossref(new windwow)
2.
Weyl Type Theorems for Left and Right Polaroid Operators, Integral Equations and Operator Theory, 2010, 66, 1, 1  crossref(new windwow)
3.
Browder-type Theorems and SVEP, Mediterranean Journal of Mathematics, 2011, 8, 3, 399  crossref(new windwow)
4.
WEYL'S THEOREM FOR CLASS A(k) OPERATORS, Glasgow Mathematical Journal, 2008, 50, 01  crossref(new windwow)
 References
1.
P. Aiena, Classes of operators satisfying a-Weyl's theorem, Studia Math. 169 (2005), no. 2, 105-122 crossref(new window)

2.
P. Aiena, C. Carpintero and E. Rosas, Some characterizations of operators sat- isfying a-Browder's theorem, J. Math. Anal. Appl. 311 (2005), no. 2, 530-544 crossref(new window)

3.
A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Oper- ator Theory 13 (1990), no. 3, 307-315 crossref(new window)

4.
M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equations Operator Theory 53 (2005), 497-508 crossref(new window)

5.
L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288 crossref(new window)

6.
S. V. Djordjevic and Y. M. Han, Browder's theorem and spectral continuity, Glasgow Math. J. 42 (2000), no. 3, 479-486 crossref(new window)

7.
B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), 203- 217

8.
B. P. Duggal, Weyl's theorem for totally hereditarily normaloid operators, Rend. Circ. Mat. Palermo (2) 53 (2004), no. 3, 417-428 crossref(new window)

9.
T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001

10.
T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1 (1998), 389-403

11.
R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988

12.
R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124 crossref(new window)

13.
H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982

14.
I. H. Jeon, Weyl's theorem and quasi-similarity, Integral Equations Operator Theory 39 (2001), no. 2, 214-221 crossref(new window)

15.
I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc. 41 (2004), no. 4, 617-627 crossref(new window)

16.
I. H. Jeon and I. H. Kim, On operators satisfying $T*\midT^2\midT\geqT*\midT^2\midT$, Lin. Alg. Appl. (to appear)

17.
I. H. Jeon, J. I. Lee and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Ineq. Appl. 6 (2003), no. 2, 309-315

18.
K. B. Laursen and M. N. Neumann, Introduction to local spectral theory, Claren- don Press, Oxford, 2000

19.
W. Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998), 319-331 crossref(new window)

20.
W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131-138

21.
W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61-64 crossref(new window)

22.
C. A. McCarthy, $c_\rho$, Israel J. Math. 5 (1967), 249-271 crossref(new window)

23.
V. Rakocevic, On one subset of M. Scechter's essential spectrum, Mat. Vesnik 5 (1981), no. 4, 389-391

24.
V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919

25.
C. Schmoeger, The spectral mapping theorem for the essentail approximate point spectrum, Collquium Math. 74 (1997), 167-176

26.
A. Uchiyama, Inequalities of Putnam and Berger-Shaw for p-quasihyponormal operators, Integral Equations Operator Theory 34 (1999), no. 1, 91-106 crossref(new window)

27.
A. Uchiyama, Weyl's theorem for class A operators, Math. Inequal. Appl. 4 (2001), no. 1, 143-150

28.
A. Uchiyama and S. V. Djordjevic, Weyl's theorem for p-quasihyponormal operators (preprint)