JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MODULI SPACES OF 3-DIMENSIONAL FLAT MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MODULI SPACES OF 3-DIMENSIONAL FLAT MANIFOLDS
Kang, Eun-Sook;
  PDF(new window)
 Abstract
For 3-dimensional Bieberbach groups, we study the de-formation spaces in the group of isometries of . First we calculate the discrete representation spaces and the automorphism groups. Then for each of these Bieberbach groups, we give complete descriptions of spaces, Chabauty spaces, and moduli spaces.
 Keywords
Bieberbach group;flat manifold;moduli space; space;
 Language
English
 Cited by
1.
On infinitesimal Einstein deformations, Differential Geometry and its Applications, 2015, 38, 41  crossref(new windwow)
 References
1.
H. Brown, R. BÄulow, J. Neubuser, H. Wondratschek, and H. Zassenhaus, Crystal- lographic groups of four-dimensional space, Wiley-Interscience, New York, 1978

2.
L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, 1986

3.
E. S. Kang and J. Y. Kim, Deformation spaces of 3-dimensional flat manifolds, Commun. Korean Math. Soc. 18 (2003), no. 1, 95-104 crossref(new window)

4.
E. S. Kang and J. Y. Kim, TeichmÄuller spaces of nonorientable 3-dimensional flat manifolds, J. of Chungcheong Math. Soc. 15 (2002), no. 2, 57-66

5.
R. Kulkarni, K. B. Lee, and F. Raymond, Deformation Spaces for Seifert Mani- folds, Springer Lecture Notes in Mathematics, vol. 1167, 1986

6.
P. Orlik, Seifert Manifolds, Lecture Notes in Math. Vol. 291, Spriger-Verlag, Berlin-New York, 1972

7.
J. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967