JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REFINEMENT OF GRÜSS TYPE INEQUALITY FOR THE BOCHNER INTEGRAL OF VECTOR-VALUED FUNCTIONS IN HILBERT SPACES AND APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A REFINEMENT OF GRÜSS TYPE INEQUALITY FOR THE BOCHNER INTEGRAL OF VECTOR-VALUED FUNCTIONS IN HILBERT SPACES AND APPLICATIONS
Buse Constantin; Cerone Pietro; Dragomir Sever Silvestru; Roumeliotis John;
  PDF(new window)
 Abstract
A refinement of type inequality for the Bochner integral of vector-valued functions in real or complex Hilbert spaces is given. Related results are obtained. Application for finite Fourier transforms of vector-valued functions and some particular inequalities are provided.
 Keywords
inequality;Bochner integral;Fourier transforms;Hilbert spaces;
 Language
English
 Cited by
 References
1.
C. Buse, S. S. Dragomir, and A. Sofo, Ostrowski's inequality for vector-valued functions of bounded semivariation and applications, New Zealand J. Math. 31 (2002), no. 2, 137-152

2.
S. S. Dragomir, A generalization of Griiuss' inequality in inner product spaces and applications, J. Math. Anal. Appl. 237 (1999), no. 1, 74-82 crossref(new window)

3.
S. S. Dragomir, Integral GrÄuss inequality for mappings with values in Hilbert spaces and applications, J. Korean Math. Soc. 38 (2001), no. 6, 1261-1273

4.
S. S. Dragomir, Some Gruss' type inequalities in inner product spaces, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 2, Article 42

5.
G. Gruss, Uber das maximum des absoluten Betrages von ${\frac{1}{b-a}}{\int}^b_af(x)g(x)dx-{\frac{1}{(b-a)^2}}{\int}^b_af(x)dx{\cdot}{\int}^b_ag(x)dx$ Math. Z. 39 (1935), no. 1, 215-226 crossref(new window)

6.
G. Hanna, S. S. Dragomir, and J. Roumeliotis, Error estimates on approximating the finite Fourier Transform of complex-valued functions via a pre-Gruss inequality, RGMIA Res. Rep. Coll. 7(2004), no. 2, Art