JOURNAL BROWSE
Search
Advanced SearchSearch Tips
IDENTIFICATION OF CONSTANT PARAMETERS IN PERTURBED SINE-GORDON EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
IDENTIFICATION OF CONSTANT PARAMETERS IN PERTURBED SINE-GORDON EQUATIONS
Ha, Jun-Hong; Nakagiri, Shin-Ichi;
  PDF(new window)
 Abstract
We study the identification problems of constant parameters appearing in the perturbed sine-Gordon equation with the Neumann boundary condition. The existence of optimal parameters is proved, and necessary conditions are established for several types of observations by utilizing quadratic optimal control theory due to Lions [13].
 Keywords
parameter identification problems;weak solutions;necessary conditions of optimality;perturbed sine-Gordon equations;
 Language
English
 Cited by
1.
OPTIMAL PARAMETERS FOR A DAMPED SINE-GORDON EQUATION,;;

대한수학회지, 2009. vol.46. 5, pp.1105-1117 crossref(new window)
1.
Identification of Space-Time Distributed Parameters in the Gierer--Meinhardt Reaction-Diffusion System, SIAM Journal on Applied Mathematics, 2014, 74, 1, 147  crossref(new windwow)
2.
Identifiability for Linearized Sine-Gordon Equation, Mathematical Modelling of Natural Phenomena, 2013, 8, 1, 106  crossref(new windwow)
 References
1.
N. U. Ahmed, Optimization and identification of systems governed by evolution equations on Banach space, Pitman Research Notes in Mathematics Series 184, Longman Scientific & Technical, 1988

2.
A. R. Bishop, K. Fesser, P. S. Lomdahl, and S. E. Trullinger, Influence of solitons in the initial state on chaos in the driven damped sine-Gordon system, Phys. D 7 (1983), no. 1-3, 259-279 crossref(new window)

3.
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology Vol. 5, Springer-Verlag, Berlin, 1992

4.
J.-M. Ghidaglia and A. Marzocchi, Longtime behaviour of strongly damped wave equations: global attractors and their dimension, SIAM J. Math. Anal. 22 (1991), no. 4, 879-895 crossref(new window)

5.
J. Ha and S. Nakagiri, Quadratic optimal control problems for nonlinear damped second order systems in Hilbert spaces, Nonlinear Anal. 30 (1997), no. 4, 2261- 2272 crossref(new window)

6.
J. Ha and S. Nakagiri, Existence and regularity of weak solutions for semilinear second order evolution equations, Funkcial. Ekvac. 41 (1998), no. 1, 1-24

7.
J. Ha and S. Nakagiri, Identification problems of damped sine-Gordon equations with constant parameters, J. Korean Math. Soc. 39 (2002), no. 4, 509-524 crossref(new window)

8.
J. Ha and S. Nakagiri, Identification Problems for the System Governed by Abstract Nonlinear Damped Second Order Evolution Equations, J. Korean Math. Soc. 41 (2004), no. 3, 435-459 crossref(new window)

9.
Y. S. Kivshar and B. A. Malomed, Many-particle effects in nearly integrable systems, Phys. D 24 (1987), no. 1-3, 125-154 crossref(new window)

10.
Y. S. Kivshar and B. A. Malomed, Dynamics of solitons in nearly integrable systems, Rev. Modern Phys. 61 (1989), 763-915 crossref(new window)

11.
C. Kravaris and J. H. Seinfeld, Identi¯cation of parameters in distributed systems by regularization, SIAM J. Control Optim. 23 (1985), no. 2, 217-241 crossref(new window)

12.
M. Levi, Beating modes in the Josephson junction, Chaos in Nonlinear Dynamical Systems, J. Chandra (Ed.), Soc. for Industr. & Appl. Math., Philadelphia, 1984

13.
J. -L. Lions, Optimal Control of Systems Governed by Partial Differential Equa- tions, Springer-Verlag, Berlin Heidelberg New York, 1971

14.
K. Nakajima and Y. Onodera, Numerical analysis of vortex motion on Josephson structures, J. Appl. Phys. 45 (1974), no. 9, 4095-4099 crossref(new window)

15.
J. I. Ramos, The sine-Gordon equation in the ¯nite line, Appl. Math. Comput. 124 (2001), no. 1, 45-93 crossref(new window)

16.
R. Temam, Infnite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Math. Sci. 68, Springer-Verlag, 1988