JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE HEREDITARILY HYPERCYCLIC OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE HEREDITARILY HYPERCYCLIC OPERATORS
Yousefi, Bahman; Farrokhinia, Ali;
  PDF(new window)
 Abstract
Let X be a separable Banach space. We give sufficient conditions under which is hereditarily hypercyclic. Also, we prove that hereditarily hypercyclicity with respect to a special sequence implies the hereditarily hypercyclicity with respect to the entire sequence.
 Keywords
hereditarily hpercyclicity;hypercyclicity criterion;
 Language
English
 Cited by
1.
HEREDITARILY HYPERCYCLICITY AND SUPERCYCLICITY OF WEIGHTED SHIFTS,;;

대한수학회지, 2014. vol.51. 2, pp.363-382 crossref(new window)
1.
Boundedness and Compactness of the Mean Operator Matrix on Weighted Hardy Spaces, ISRN Mathematical Analysis, 2012, 2012, 1  crossref(new windwow)
2.
Hereditarily transitive tuples, Rendiconti del Circolo Matematico di Palermo, 2011, 60, 3, 463  crossref(new windwow)
3.
The spectra and eigenvectors for the weighted mean matrix operator, Arab Journal of Mathematical Sciences, 2015, 21, 2, 179  crossref(new windwow)
4.
Disjoint hypercyclicity of weighted composition operators, Proceedings - Mathematical Sciences, 2015, 125, 4, 559  crossref(new windwow)
5.
HEREDITARILY HYPERCYCLICITY AND SUPERCYCLICITY OF WEIGHTED SHIFTS, Journal of the Korean Mathematical Society, 2014, 51, 2, 363  crossref(new windwow)
6.
Weighted Composition Operators and Supercyclicity Criterion, International Journal of Mathematics and Mathematical Sciences, 2011, 2011, 1  crossref(new windwow)
7.
Approximately Multiplicative Functionals on the Spaces of Formal Power Series, Abstract and Applied Analysis, 2011, 2011, 1  crossref(new windwow)
 References
1.
T. Bermudez, A. Bonilla and A. Peris, On hypercyclicity and supercyclicity cri- teria, Bull. Austral. Math. Soc. 70 (2004), no. 1, 45-54 crossref(new window)

2.
T. Bermudez, A. Bonilla, J. A. Conejero, and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math. 170 (2005), no. 1, 57-75 crossref(new window)

3.
T. Bermudez and N. J. Kalton, The range of operators on von Neumann algebras, Proc. Amer. Math. Soc. 13 (2002), no. 5, 1447-1455

4.
L. Bernal-Gonzalez and K. -G. Grosse-Erdmann, The hypercyclicity criterion for sequences of operators, Studia Math. 157 (2003), no. 1, 17-32 crossref(new window)

5.
J. Bes, Three problems on hypercyclic operators, PhD thesis, Kent State Univer- sity, 1998

6.
J. Bes, Three problems on hypercyclic operators, PhD thesis, Kent State Univer- sity, 1998

7.
J. Bonet, Hypercyclic and chaotic convolution operators, J. London Math. Soc.(2) 62 (2000), no. 1, 253-262 crossref(new window)

8.
J. Bonet, F. Martinez-Gimenez, and A. Peris, Universal and chaotic multipliers on spaces of operators, J. Math. Anal. Appl. 297 (2004), no. 2, 599-611 crossref(new window)

9.
P. S. Bourdon, Orbits of hyponormal operators, Michigan Math. J. 44 (1997), no. 2, 345-353 crossref(new window)

10.
P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125, Amer. Math. Soc. Providence, RI, 1997

11.
P. S. Bourdon and J. H. Shapiro, Hypercyclic operators that commute with the Bergman backward shift, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5293-5316 crossref(new window)

12.
G. Costakis and M. Sambarino, Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc. 132 (2004), no. 2, 385-389

13.
C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, 1995

14.
N. S. Feldman, Perturbations of hypercyclic vectors, J. Math. Anal. Appl. 273 (2002), no. 1, 67-74 crossref(new window)

15.
R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288

16.
G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Func. Anal. 98 (1991), no. 2, 229-269 crossref(new window)

17.
S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps prob- lem, J. Operator Theory 54 (2005), no. 1, 147-168

18.
K. G. Grosse-Erdmann, Holomorphic Monster und universelle Funktionen, Mitt. Math. Sem. Giessen No. 176 (1987), iv+84 pp

19.
K. G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999), no. 3, 345-381 crossref(new window)

20.
K. G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 (2000), no. 1, 47-68

21.
D. Herrero, Hypercyclic operators and chaos, J. Operator Theory 28 (1992), no. 1, 93-103

22.
C. Kitai, Invariant closed sets for linear operators, Dissertation, Univ. of Toronto, 1982

23.
F. Leon-Saavedra, Notes about the hypercyclicity criterion, Math. Slovaca 53 (2003), no. 3, 313-319

24.
A. Peris, Hypercyclicity criteria and Mittag-Leffler theorem, Bull. Soc. Roy. Sci. Liuege 70 (2001), no. 4-6, 365-371

25.
A. Peris and L. Saldivia, Syndentically hypercyclic operators, Integral Equations Operator Theory 51 (2005), no. 2, 275-281 crossref(new window)

26.
S. Rolewics, On orbits of elements, Studia Math. 32 (1969), 17-22

27.
H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004 crossref(new window)

28.
J. H. Shapiro, Notes on the dynamics of linear operators, http://www.math.msu.edu/ shapiro

29.
A. L. Shields, Weighted shift operators and analytic function theory, Math. Sur- veys, Amer. Math. Soc. Providence 13 (1974), 49-128

30.
B. Yousefi, On the space ${\ell}^P({\beta})$ , Rend. Circ. Mat. Palermo (2) 49 (2000), no. 1, 115-120 crossref(new window)

31.
B. Yousefi,Unicellularity of the multiplication operator on Banach spaces of formal power series, Studia Math. 147 (2001), no. 3, 201-209 crossref(new window)

32.
B. Yousefi, Bounded analytic structure of the Banach space of formal power series, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 3, 403-410 crossref(new window)

33.
B. Yousefi, Strictly cyclic algebra of operators acting on Banach spaces $H^P({\beta})$, Czechoslovak Math. J. 54 (129) (2004), no. 1, 261-266 crossref(new window)

34.
B. Yousefi,Composition operators on weighted Hardy spaces, Kyungpook Math. J. 44 (2004), no. 3, 319-324

35.
B. Yousefi, On the eighteenth question of Allen Shields, Internat. J. Math. 16 (2005), no. 1, 37-42 crossref(new window)

36.
B. Yousefi and S. Jahedi, Composition operators on Banach spaces of formal power series, Boll. Unione Math. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), no. 2, 481-487

37.
B. Yousefi and A. I. Kashkuli, Cyclicity and unicellularity of the differentiation operator on Banach spaces of formal power series, Math. Proc. R. Ir. Acad. 105 A (2005), no. 1, 1-7

38.
B. Yousefi and H. Rezaei, Hypercyclicity on the algebra of Hilbert-Schmidt oper- ators, Results in Mathematics 46 (2004), no. 1-2, 174-180 crossref(new window)

39.
B. Yousefi and H. Rezaei, Some necessary and sufficient conditions for hypercyclicity criterion, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 2, 209-216