JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ANTI-HOLOMORPHIC TWISTOR AND SYMPLECTIC STRUCTURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ANTI-HOLOMORPHIC TWISTOR AND SYMPLECTIC STRUCTURE
Joe, Do-Sang;
  PDF(new window)
 Abstract
It is well known that the twistor, section of twistor space, classify the orthogonal almost complex structure on even dimensional Riemannian manifold (X, g). We will show that existence of a harmonic and anti-holomorphic twistor is equivalent to having a symplectic structure on (X, g).
 Keywords
twistor space;pure spinor;symplectic structure;
 Language
English
 Cited by
 References
1.
S. K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Bull. Amer. Math. Soc. (N. S.) 33 (1996), no. 1, 45-70 crossref(new window)

2.
R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527-595 crossref(new window)

3.
H. Blaine, Jr. Lawson and M.-L. Michelsohn, Spin geometry, Princeton Mathe- matical Series volume 38, Princeton University Press, Princeton, NJ, 1989

4.
J. W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes volume 44, Princeton University Press, Princeton, NJ, 1996

5.
C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809-822 crossref(new window)

6.
C. H. Taubes, More constraints on symplectic forms from Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), no. 1, 9-13 crossref(new window)