JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NONDEGENERATE AFFINE HOMOGENEOUS DOMAIN OVER A GRAPH
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NONDEGENERATE AFFINE HOMOGENEOUS DOMAIN OVER A GRAPH
Choi, Yun-Cherl;
  PDF(new window)
 Abstract
The affine homogeneous hypersurface in , which is a graph of a function with |det DdF|
 Keywords
affine homogeneous domain;graph extension;left symmetric algebra;Hessian structure;
 Language
English
 Cited by
1.
HESSIAN GEOMETRY OF THE HOMOGENEOUS GRAPH DOMAIN,;;

대한수학회논문집, 2007. vol.22. 3, pp.419-428 crossref(new window)
 References
1.
Y. Choi, Left invariant flat affine structure on Lie group, master's thesis, Seoul National Univ., 1995

2.
Y. Choi, Cayley hypersurface and left symmetric algebra, PhD thesis, Seoul National Univ., 2002

3.
Y. Choi and H. Kim, A characterization of Cayley Hypersurface and Eastwood and Ezhov conjecture, Internat. J. Math. 16 (2005) no. 8, 841-862 crossref(new window)

4.
F. Dillen and L. Vrancken, Hypersurfaces with parallel difference tensor, Japan. J. Math. (N.S.) 24 (1998), no. 1, 43-60

5.
M. Eastwood and V. Ezhov, On affine normal forms and a classification of homogeneous surfaces in affine three-space, Geom. Dedicata 77 (1999) no. 1, 11-69 crossref(new window)

6.
M. Eastwood and V. Ezhov, Homogeneous hypersurfaces with isotropy in affine four-space, Tr. Mat. Inst. Steklova 253 (2001), Anal. i Geom. Vopr. Kompleks. Analiza, 57-70

7.
W. M. Goldman and M. W. Hirsch, Affine manifolds and orbits of algebraic groups, Trans. Amer. Math. Soc. 295 (1986) no. 1, 175-198 crossref(new window)

8.
J. H. Hao and H. Shima, Level surfaces of nondegenerate functions in $R^{n+1}$, Geom. Dedicata 50 (1994), 193-204 crossref(new window)

9.
H. Kim, Complete left invariant affine structures on nilpotent Lie groups, J. Differential Geom. 24 (1986), 373-394

10.
H. Kim, Developing maps of affinely flat Lie groups, Bull. Korean Math. Soc. 34 (1997), no. 4, 509-518

11.
K. Kim, Left invariant affinely flat structures on solvable Lie group, PhD thesis, Seoul National Univ., 1998

12.
J.-L. Koszul, Domaines bornes homogenes et orbites de groupes de transformations affines, Bull. Soc. Math. France 89 (1961), no. 26, 515-533

13.
A. Mizuhara, On left symmetric algebras with a principal idempotent, Math. Japon. 49 (1999), no. 1, 39-50

14.
K. Nomizu and T. Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics, 111, Cambridge University Press, 1994

15.
B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics 103, Academic Press Inc., 1983

16.
D. Segal, The structure of complete left-symmetric algebras, Math. Ann. 293 (1992), no. 3, 569-578 crossref(new window)

17.
H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math. 13 (1976), no. 2, 213-229

18.
H. Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble) 30 (1976) no. 3, 91-128

19.
E. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1963), 340-403