JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG LAWS OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONG LAWS OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
Ko, Mi-Hwa; Han, Kwang-Hee; Kim, Tae-Sung;
  PDF(new window)
 Abstract
For double arrays of constants and sequences of negatively orthant dependent random variables , the conditions for strong law of large number of ${\sum}^{k_n}_{i
 Keywords
negatively quadrant dependent;negatively orthant dependent;strong law of large number;weighted sum;double array;stochastically dominated;
 Language
English
 Cited by
1.
Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables,;;

Journal of the Korean Statistical Society, 2010. vol.39. 2, pp.189-197 crossref(new window)
2.
STRONG LIMIT THEOREMS FOR WEIGHTED SUMS OF NOD SEQUENCE AND EXPONENTIAL INEQUALITIES,;;;

대한수학회보, 2011. vol.48. 5, pp.923-938 crossref(new window)
3.
THE BAUM-KATZ LAW OF LARGE NUMBERS FOR NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES,;

충청수학회지, 2011. vol.24. 1, pp.75-83
4.
CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES,;;

대한수학회지, 2012. vol.49. 6, pp.1097-1110 crossref(new window)
5.
On limiting behavior for arrays of rowwise negatively orthant dependent random variables,;;;

Journal of the Korean Statistical Society, 2013. vol.42. 1, pp.61-70 crossref(new window)
1.
An exponential inequality for a NOD sequence and a strong law of large numbers, Applied Mathematics Letters, 2011, 24, 2, 219  crossref(new windwow)
2.
CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES, Journal of the Korean Mathematical Society, 2012, 49, 6, 1097  crossref(new windwow)
3.
Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
4.
Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables, Journal of the Korean Statistical Society, 2010, 39, 2, 189  crossref(new windwow)
5.
Complete moment convergence for maximal partial sums under NOD setup, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
6.
Complete moment convergence of weighted sums for arrays of negatively dependent random variables and its applications, Communications in Statistics - Theory and Methods, 2016, 45, 11, 3185  crossref(new windwow)
7.
Strong convergence for weighted sums of ρ*-mixing random variables, Glasnik Matematicki, 2014, 49, 1, 221  crossref(new windwow)
8.
Limiting behaviour for arrays of row-wise END random variables under conditions ofh-integrability, Stochastics An International Journal of Probability and Stochastic Processes, 2015, 87, 3, 409  crossref(new windwow)
9.
Equivalent Conditions of Complete Convergence for Weighted Sums of Sequences of Negatively Dependent Random Variables, Abstract and Applied Analysis, 2012, 2012, 1  crossref(new windwow)
10.
Some Limit Theorems for Weighted Sums of Arrays of Nod Random Variables, Acta Mathematica Scientia, 2012, 32, 6, 2388  crossref(new windwow)
11.
On limiting behavior for arrays of rowwise negatively orthant dependent random variables, Journal of the Korean Statistical Society, 2013, 42, 1, 61  crossref(new windwow)
12.
STRONG LIMIT THEOREMS FOR WEIGHTED SUMS OF NOD SEQUENCE AND EXPONENTIAL INEQUALITIES, Bulletin of the Korean Mathematical Society, 2011, 48, 5, 923  crossref(new windwow)
 References
1.
B. D. Choi and S. H. Sung, Almost sure convergence theorems of weighted sums of random variables, Stochastic Anal. Appl. 5 (1987), no. 4, 365-377 crossref(new window)

2.
N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Comm. Statist. A-Theory Methods 10 (1981), no. 4, 307-337 crossref(new window)

3.
K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Statist. 11 (1983), no. 1, 286-295 crossref(new window)

4.
T. S. Kim, M. H. Ko, and I. H. Lee, On the strong law for asymptotically almost negatively associated random variables, Rocky Mountain J. Math. 34 (2004), no. 3, 979-989 crossref(new window)

5.
M. H. Ko and T. S. Kim, Almost sure convergence for weighted sums of negatively orthant dependent random variables, J. Korean Math. Soc. 42 (2005), no. 5, 949- 957 crossref(new window)

6.
E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153 crossref(new window)

7.
P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Stat. Probab. Lett. 15 (1992), no. 3, 209-213 crossref(new window)

8.
R. L. Taylor, R.F Patteson, and A. Bozorgnia, A strong law of large numbers for arrays of rowwise negatively dependent random variables, Stochastic Anal. Appl. 20 (2002), no. 3, 643-656 crossref(new window)

9.
H. Teicher, Generalized exponential bounds, iterated logarithm and strong laws, Z. Warhsch. Verw. Gebiete 48 (1979), no. 3, 293-307 crossref(new window)

10.
Y. Qi, Limit theorems for sums and maxima of pairwise negative quadrant de- pendent random variables, Systems Sci. Math. Sci. 8 (1995), no. 3, 249-253