JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS
Lee, Chae-Jang;
  PDF(new window)
 Abstract
The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using p-adic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim`s h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question which was remained in [3].
 Keywords
p-adic integrals;p-adic twisted L-functions;p-Bernoulli numbers;
 Language
English
 Cited by
1.
THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS,;

대한수학회보, 2010. vol.47. 6, pp.1181-1188 crossref(new window)
2.
A NOTE ON THE WEIGHTED TWISTED DIRICHLET'S TYPE q-EULER NUMBERS AND POLYNOMIALS,;;;

호남수학학술지, 2011. vol.33. 3, pp.311-320 crossref(new window)
3.
A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS,;;

대한수학회보, 2013. vol.50. 2, pp.659-665 crossref(new window)
1.
THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS, Bulletin of the Korean Mathematical Society, 2010, 47, 6, 1181  crossref(new windwow)
2.
A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers, Applied Mathematics and Computation, 2010, 216, 10, 2976  crossref(new windwow)
3.
A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS, Bulletin of the Korean Mathematical Society, 2013, 50, 2, 659  crossref(new windwow)
4.
Effects of Social Capital on Organizational Performance in Hospital Organization - Focusing on Effects of Intellectual Capital -, Journal of Korean Academy of Nursing Administration, 2011, 17, 1, 22  crossref(new windwow)
5.
Development of QI Activity Evaluation Framework Based on PDCA and Case Study on Quality Improvement Activities, Journal of Korean Academy of Nursing Administration, 2012, 18, 2, 222  crossref(new windwow)
6.
A Preliminary Analysis of Spatial Variability of Raindrop Size Distributions during Stratiform Rain Events, Journal of Applied Meteorology and Climatology, 2009, 48, 2, 270  crossref(new windwow)
7.
When everyone goes to college: The causal effect of college expansion on earnings, Social Science Research, 2015, 50, 229  crossref(new windwow)
8.
Effects of Intellectual Capital on Organizational Performance of Nurses in Medium and Small Hospitals, Journal of Korean Academy of Nursing Administration, 2012, 18, 4, 452  crossref(new windwow)
9.
A Note on the Multiple Twisted Carlitz's Type -Bernoulli Polynomials, Abstract and Applied Analysis, 2008, 2008, 1  crossref(new windwow)
10.
A comparison of Korean and US continuous improvement projects, International Journal of Productivity and Performance Management, 2014, 63, 4, 384  crossref(new windwow)
11.
On the Barnes' Type Related to Multiple Genocchi Polynomials on, Abstract and Applied Analysis, 2012, 2012, 1  crossref(new windwow)
12.
A NOTE ON THE WEIGHTED TWISTED DIRICHLET'S TYPE q-EULER NUMBERS AND POLYNOMIALS, Honam Mathematical Journal, 2011, 33, 3, 311  crossref(new windwow)
 References
1.
G. E. Andrews, Number Theory, W. B. Saunder Company, Philandelphia, London- Toronto, 1971

2.
G. Bachmann, Introduction to p-adic numbers and valuation theory, Academic Press, New York-London, 1964

3.
T. Kim, L. C. Jang, S. G. Rim, and H. K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13-21

4.
T. Kim and S. H. Rim, Generalized Carlitz's q-Bernoulli numbers in the p-adic number field, Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19

5.
T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299

6.
T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267

7.
T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329 crossref(new window)

8.
T. Kim, p-adic q-integrals associated with Changhee-Barnes' q-Bernoulli polynomials, Integral Transforms Spec. Funct. 15 (2004), no. 5, 415-420 crossref(new window)

9.
T. Kim, Non-Archimedean q-integrals associated with multuple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91-98

10.
T. Kim, Analytic continuation of multiple q-zeta functions and their values, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76

11.
T. Kim, q-Riemann zeta functions, Int. J. Math. Math. Sci. 12 (2004), no. 9-12, 599-605

12.
T. Kim, On p-adic q - L-functions and sums of powers, Discrete Math. 252 (2002), no. 1-3, 179-187 crossref(new window)

13.
T. Kim, On explicit formulas of p-adic q - L-functions, Kyushu J. Math. 48 (1994), no. 1, 73-86 crossref(new window)

14.
T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyung-shang) 9 (2004), no. 1, 15-18

15.
N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), no. 2, 455-468 crossref(new window)

16.
N. Koblitz, p-adic numbers, p-adic analysis and Zeta functions, Graduate Texts in Math-ematics, Vol. 58. Springer-Verlag, New York-Heidelberg, 1977

17.
N. Koblitz, On Carlitz's q-Bernoulli numbers, J. Number Theory 14 (1982), no. 3, 332-339 crossref(new window)

18.
N. Koblitz, p-adic numbers and their functions, Springer-Verlag, GTM 58, 1984

19.
A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics, 198. Springer-Verlag, New York, 2000

20.
W. H. Schikhof, Ultrametric Calculus, Cambridge Studies in Advanced Mathematics, 4. Cambridge University Press, Cambridge, 1984

21.
K. Shiratani and S. Yamamoto, On a p-adic interpolating function for the Euler number and its derivative, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), no. 1, 113-125

22.
Y. Simsek, On p-adic twisted q - L-functions related to generalized twisted Bernoulli numbers, Russian J. Math. Phys. 13 (2006), no. 3, 340-348 crossref(new window)

23.
Y. Simsek, Twisted (h,q)-Bernoulli numbers and polynomials related to twisted (h; q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), no. 2, 790-804 crossref(new window)

24.
Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 205-218

25.
A. C. M. van Rooji, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978

26.
L. C. Washington, Introduction to Cyclotomic fields, Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997