JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HYBRID MEAN VALUE OF GENERALIZED BERNOULLI NUMBERS, GENERAL KLOOSTERMAN SUMS AND GAUSS SUMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HYBRID MEAN VALUE OF GENERALIZED BERNOULLI NUMBERS, GENERAL KLOOSTERMAN SUMS AND GAUSS SUMS
Liu, Huaning; Zhang, Wenpeng;
  PDF(new window)
 Abstract
The main purpose of this paper is to use the properties of primitive characters, Gauss sums and Ramanujan`s sum to study the hybrid mean value of generalized Bernoulli numbers, general Kloosterman sums and Gauss sums, and give two asymptotic formulae.
 Keywords
Bernoulli numbers;Kloosterman sums;Gauss sums;
 Language
English
 Cited by
1.
ON MIXED TWO-TERM EXPONENTIAL SUMS,;

대한수학회지, 2010. vol.47. 6, pp.1107-1122 crossref(new window)
1.
ON MIXED TWO-TERM EXPONENTIAL SUMS, Journal of the Korean Mathematical Society, 2010, 47, 6, 1107  crossref(new windwow)
 References
1.
T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Math- ematics. Springer-Verlag, New York-Heidelberg, 1976

2.
S. Chowla, On Kloosterman's sum, Norske Vid. Selsk. Forh. (Trondheim) 40 (1967), 70-72

3.
T. Estermann, On Kloosterman's sum, Mathematica 8 (1961), 83-86

4.
H. W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131-140 crossref(new window)

5.
H. Liu and W. Zhang, On the hybrid mean value of Gauss sums and generalized Bernoulli numbers, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 6, 113-115 crossref(new window)

6.
A. V. Malysev, A generalization of Kloosterman sums and their estimates, Vestnik Leningrad. Univ. 15 (1960), no. 13, 59-75

7.
C.-D. Pan and C.-B. Pan, Goldbach's Conjecture, Chuncui Shuxue yu Yingyong Shuxue Zhuanzhu [Series of Monographs in Pure and Applied Mathematics], 7. Kexue Chuban- she (Science Press), Beijing, 1981

8.
Y. Yi and W. Zhang, On the 2k-th power mean of inversion of L-functions with the weight of Gauss sums, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 1, 175-180 crossref(new window)

9.
W. Zhang, The first power mean of the inversion of L-functions and general Klooster- man sums, Monatsh. Math. 136 (2002), no. 3, 259-267 crossref(new window)

10.
W. Zhang, On a Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 267 (2002), no. 1, 89-96 crossref(new window)

11.
W. Zhang, On the general Kloosterman sums and its fourth power mean, J. Number Theory 104 (2004), no. 1, 156-161 crossref(new window)

12.
W. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Appl. Math. 35 (2004), no. 2, 237-242

13.
W. Zhang and H. Liu, A note on the Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 288 (2003), no. 2, 646-659 crossref(new window)

14.
W. Zhang, Y. Yi, and X. He, On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, J. Number Theory 84 (2000), no. 2, 199-213 crossref(new window)