JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EQUIVARIANT SEMIALGEBRAIC LOCAL-TRIVIALITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EQUIVARIANT SEMIALGEBRAIC LOCAL-TRIVIALITY
Park, Dae-Heui;
  PDF(new window)
 Abstract
We prove the equivariant version of the semialgebraic local-triviality of semialgebraic maps.
 Keywords
transformation group;semialgebraic set;local-triviality;
 Language
English
 Cited by
 References
1.
J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Erg. der Math. und ihrer Grenzg., vol. 36, Springer-Verlag, Berlin Heidelberg, 1998

2.
G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, London, 1972

3.
G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z. 195 (1987), no. 1, 69-78 crossref(new window)

4.
M. -J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean. Math. Soc. 41 (2004), no. 4, 629-646

5.
R. M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), no. 2, 291{302 crossref(new window)

6.
H. Hironaka, Triangulations of algebraic sets, Proc. Sympos. Pure Math. 29 (1975), 165- 185

7.
J. J. Madden and C. M. Stanton, One-dimensional Nash groups, Pacific. J. Math. 154 (1992), no. 2, 331-344 crossref(new window)

8.
D. H. Park and D. Y. Suh, Equivariant semi-algebraic triangulation of real algebraic G-varieties, Kyushu J. Math. 50 (1996), no. 1, 179-205 crossref(new window)

9.
D. H. Park and D. Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242 (2002), no. 4, 725- 742 crossref(new window)