JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS
Lee, Mi-Young; Lee, Sang-Hun;
  PDF(new window)
 Abstract
An operator is said to be p-paranormal if for all and p > 0, where is the polar decomposition of T. It is easy that every 1-paranormal operator is paranormal, and every p-paranormal operator is paranormal for 0 < p < 1. In this note, we discuss some properties for p-paranormal operators.
 Keywords
paranormal;p-paranormal;polar decomposition;
 Language
English
 Cited by
1.
Quasinormality and Fuglede-Putnam theorem for (s, p)-w-hyponormal operators, Linear and Multilinear Algebra, 2016, 1  crossref(new windwow)
 References
1.
A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), no. 3, 307-315 crossref(new window)

2.
A. Aluthge and D.Wang, w-Hyponormal operators, Integral Equations Operator Theory 36 (2000), no. 1, 1-10 crossref(new window)

3.
A. Aluthge and D.Wang, An operators inequality which implies paranormality, Math. Inequal. Appl. 2 (1999), no. 1, 113-119

4.
T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 133 (1972), 169-178

5.
M. Cho and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. l23 (1995), no. 8, 2435-2440 crossref(new window)

6.
M. Fujii, C. Himeji, and A. Matsumoto, Theorems of Ando and Saito for p-hyponormal operators, Math. Japon. 39 (1994), no. 3, 595-598

7.
M. Fujii, S. Izumino, and R. Nakamoto, Classes of operators determined by the Heinz¡ - Kato - Furuta inequality and the Holder-McCarthy inequality, Nihonkai Math. J. 5 (1994), no. 1, 61-67

8.
M. Fujii, D. Jung, S.-H. Lee, M.-Y. Lee, and R. Nakamoto, Some classses of operators related to paranormal and log-hyponormal operators, Math. Japon. 51 (2000), no. 3, 395-402

9.
T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598 crossref(new window)

10.
T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged) 46 (1983), no. 1-4, 261-268

11.
T. Furuta, Invitation to linear operators, Taylor & Francis, Ltd., London, 2001

12.
P. R. Halmos, A Hilbert Space Problem Book, D. Van Norstand Co., Inc., Princeton, N. J.-Toronto, 1967

13.
G. K. Pederson, Analysis Now, Graduate Texts in Mathematics, 118, 1989

14.
C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330 crossref(new window)

15.
T. Saito, Hyponormal operators and related topics, Lecture Note in Math. 247, Springer, Berlin, 1972

16.
N. C. Shah and I. H. Sheth, On paranormal operators, Math. Japon. 19 (1974), 79-81

17.
K. Tanahashi, On log-hyponormal operators, Integral Equations Operator Theory 34 (1999), no. 3, 364-372 crossref(new window)

18.
K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integral Equations Operator Theory 48 (2004), no. 1, 103-114 crossref(new window)

19.
D. Xia, Spectral Theory of hyponormal operators, Operator Theory : Advances and Applications 10, Birkhauser Verlag, Boston, 1983

20.
T. Yamazaki, M. Ito, and T. Furuta, A subclasses of paranormal including class of log-hyponormal and several related classes, Surikaisekikenkyusho Kokyuroku No. 1080 (1999), 41-55