JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES I
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES I
Kim, Dae-Yeoul; Koo, Ja-Kyung;
  PDF(new window)
 Abstract
Let k be an imaginary quadratic field, h the complex upper half plane, and let $\tau{\in}h{\cap}k,\;q
 Keywords
transcendental number;algebraic number;theta series;Rogers-Ramanujan identities;
 Language
English
 Cited by
1.
ARITHMETIC OF INFINITE PRODUCTS AND ROGERS-RAMANUJAN CONTINUED FRACTIONS,;;;

대한수학회논문집, 2007. vol.22. 3, pp.331-351 crossref(new window)
2.
ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES II,;;

대한수학회지, 2008. vol.45. 5, pp.1379-1391 crossref(new window)
3.
REMARKS FOR BASIC APPELL SERIES,;;

호남수학학술지, 2009. vol.31. 4, pp.463-478 crossref(new window)
4.
DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES,;;

대한수학회보, 2012. vol.49. 4, pp.693-704 crossref(new window)
1.
A note on the transcendence of infinite products, Czechoslovak Mathematical Journal, 2012, 62, 3, 613  crossref(new windwow)
2.
REMARKS FOR BASIC APPELL SERIES, Honam Mathematical Journal, 2009, 31, 4, 463  crossref(new windwow)
3.
DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES, Bulletin of the Korean Mathematical Society, 2012, 49, 4, 693  crossref(new windwow)
 References
1.
C. Adiga and T. Kim, On a continued fraction of Ramanujan, Tamsui Oxf. J. Math. Sci. 19 (2003), no. 1, 55-65

2.
K. Barre-Sirieix, G. Diaz, F. Gramain, and G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), no. 1-3, 1-9 crossref(new window)

3.
B. C. Berndt, Ramanujan's Notebooks III, Springer, 1991

4.
B. C. Berndt, Ramanujan's Notebooks V, Springer, 1998

5.
B. C. Berndt, H. H. Chan, and L.-C. Zhang, Ramanujan's remarkable product of theta- functions, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 3, 583-612 crossref(new window)

6.
B. C. Berndt and A. Yee, On the generalized Rogers-Ramanujan continued fraction, Ramanujan J. 7 (2003), no. 1-3, 321-331 crossref(new window)

7.
D. Bertrand, Series d'Eisenstein et transcendence, Bull. Soc. Math. France 104 (1976), no. 3, 309-321

8.
D. Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), no. 4, 339-350 crossref(new window)

9.
H. H. Chan and Y. L. Ong, On Eisenstein series and $\sum_{m,n}^{\infty}=_{-{\infty}}q^{m^2+mn+2n^2}$, Proc. Amer. Math. Soc. 127 (1999), no. 6, 1735-1744 crossref(new window)

10.
D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa, Transcendence of Rogers- Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 7, 140-142 crossref(new window)

11.
A. B. Ekin, The rank and the crank in the theory of partitions, Ph. D Thesis, University of Sussex, 1993

12.
L. Euler, Introduction to Analysis of the In¯nite, Springer-Verlag, 1988

13.
N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical So- ciety, 1988

14.
M. D. Hirschhorn, An identity of Ramanujan, and application, in 'q-series from a contemporary perspective', Contemp. Math. 254 (2000), 229-234 crossref(new window)

15.
A. Hurwitz, Uber die Entwickelungscoefficienten der lemniscatischen Funktionen., Math. Ann. 51 (1898), no. 2, 196-226 crossref(new window)

16.
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer- Verlag, 1990

17.
D. Kim and J. K. Koo, Algebraic integer as values of elliptic functions, Acta Arith. 100 (2001), no. 2, 105-116 crossref(new window)

18.
D. Kim and J. K. Koo, Algebraic numbers, transcendental numbers and elliptic curves derived from in¯nite products, J. Korean Math. Soc. 40 (2003), no. 6, 977-998

19.
O. Kolberg, Some identities involving the partition function, Math. Scand. 5 (1957), 77-92

20.
S. Lang, Elliptic Functions, Addison-Wesley, 1973

21.
V. A. Lebesgue, Sommation de quelques series, J. Math. Pure. Appl. 5 (1840), 42-71

22.
D. Mumford, Tata Lectures on Theta I, Birkhauser Boston, Inc., Boston, MA, 1983

23.
S. Ramanujan, Collected Papers, Chelsea, 1962

24.
S. Ramanujan, Modular equations and approximations to ${\pi}$ , Quart. J. Math (Oxford) 45 (1914), 350-372

25.
L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. (1) 25 (1894), 318-343 crossref(new window)

26.
M. Rosen, Abel's theorem on the lemniscate, Amer. Math. Monthly 88 (1981), no. 6, 387-395 crossref(new window)

27.
T. Schneider, Transzendenzeigenschaften elliptischer Funktionen, J. Reine Angew. Math. 14 (1934), 70-74

28.
A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), 1-122

29.
L. J. Slater, Further identies of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167 crossref(new window)

30.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Press, 1962