JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES I
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES I
Kim, Dae-Yeoul; Koo, Ja-Kyung;
  PDF(new window)
 Abstract
Let k be an imaginary quadratic field, h the complex upper half plane, and let $\tau{\in}h{\cap}k,\;q
 Keywords
transcendental number;algebraic number;theta series;Rogers-Ramanujan identities;
 Language
English
 Cited by
1.
ARITHMETIC OF INFINITE PRODUCTS AND ROGERS-RAMANUJAN CONTINUED FRACTIONS,;;;

대한수학회논문집, 2007. vol.22. 3, pp.331-351 crossref(new window)
2.
ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES II,;;

대한수학회지, 2008. vol.45. 5, pp.1379-1391 crossref(new window)
3.
REMARKS FOR BASIC APPELL SERIES,;;

호남수학학술지, 2009. vol.31. 4, pp.463-478 crossref(new window)
4.
DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES,;;

대한수학회보, 2012. vol.49. 4, pp.693-704 crossref(new window)
1.
REMARKS FOR BASIC APPELL SERIES, Honam Mathematical Journal, 2009, 31, 4, 463  crossref(new windwow)
2.
DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES, Bulletin of the Korean Mathematical Society, 2012, 49, 4, 693  crossref(new windwow)
3.
A note on the transcendence of infinite products, Czechoslovak Mathematical Journal, 2012, 62, 3, 613  crossref(new windwow)
 References
1.
C. Adiga and T. Kim, On a continued fraction of Ramanujan, Tamsui Oxf. J. Math. Sci. 19 (2003), no. 1, 55-65

2.
K. Barre-Sirieix, G. Diaz, F. Gramain, and G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), no. 1-3, 1-9 crossref(new window)

3.
B. C. Berndt, Ramanujan's Notebooks III, Springer, 1991

4.
B. C. Berndt, Ramanujan's Notebooks V, Springer, 1998

5.
B. C. Berndt, H. H. Chan, and L.-C. Zhang, Ramanujan's remarkable product of theta- functions, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 3, 583-612 crossref(new window)

6.
B. C. Berndt and A. Yee, On the generalized Rogers-Ramanujan continued fraction, Ramanujan J. 7 (2003), no. 1-3, 321-331 crossref(new window)

7.
D. Bertrand, Series d'Eisenstein et transcendence, Bull. Soc. Math. France 104 (1976), no. 3, 309-321

8.
D. Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), no. 4, 339-350 crossref(new window)

9.
H. H. Chan and Y. L. Ong, On Eisenstein series and $\sum_{m,n}^{\infty}=_{-{\infty}}q^{m^2+mn+2n^2}$, Proc. Amer. Math. Soc. 127 (1999), no. 6, 1735-1744 crossref(new window)

10.
D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa, Transcendence of Rogers- Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 7, 140-142 crossref(new window)

11.
A. B. Ekin, The rank and the crank in the theory of partitions, Ph. D Thesis, University of Sussex, 1993

12.
L. Euler, Introduction to Analysis of the In¯nite, Springer-Verlag, 1988

13.
N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical So- ciety, 1988

14.
M. D. Hirschhorn, An identity of Ramanujan, and application, in 'q-series from a contemporary perspective', Contemp. Math. 254 (2000), 229-234 crossref(new window)

15.
A. Hurwitz, Uber die Entwickelungscoefficienten der lemniscatischen Funktionen., Math. Ann. 51 (1898), no. 2, 196-226 crossref(new window)

16.
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer- Verlag, 1990

17.
D. Kim and J. K. Koo, Algebraic integer as values of elliptic functions, Acta Arith. 100 (2001), no. 2, 105-116 crossref(new window)

18.
D. Kim and J. K. Koo, Algebraic numbers, transcendental numbers and elliptic curves derived from in¯nite products, J. Korean Math. Soc. 40 (2003), no. 6, 977-998

19.
O. Kolberg, Some identities involving the partition function, Math. Scand. 5 (1957), 77-92

20.
S. Lang, Elliptic Functions, Addison-Wesley, 1973

21.
V. A. Lebesgue, Sommation de quelques series, J. Math. Pure. Appl. 5 (1840), 42-71

22.
D. Mumford, Tata Lectures on Theta I, Birkhauser Boston, Inc., Boston, MA, 1983

23.
S. Ramanujan, Collected Papers, Chelsea, 1962

24.
S. Ramanujan, Modular equations and approximations to ${\pi}$ , Quart. J. Math (Oxford) 45 (1914), 350-372

25.
L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. (1) 25 (1894), 318-343 crossref(new window)

26.
M. Rosen, Abel's theorem on the lemniscate, Amer. Math. Monthly 88 (1981), no. 6, 387-395 crossref(new window)

27.
T. Schneider, Transzendenzeigenschaften elliptischer Funktionen, J. Reine Angew. Math. 14 (1934), 70-74

28.
A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), 1-122

29.
L. J. Slater, Further identies of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167 crossref(new window)

30.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Press, 1962