JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REAL HYPERSURFACES IN COMPLEX SPACE FORMS WITH ε-PARALLEL RICCI TENSOR AND STRUCTURE JACOBI OPERATOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REAL HYPERSURFACES IN COMPLEX SPACE FORMS WITH ε-PARALLEL RICCI TENSOR AND STRUCTURE JACOBI OPERATOR
Ki, U-Hang; Perez Juan De Dios; Santos Florentino G.; Suh Young-Jin;
  PDF(new window)
 Abstract
We know that there are no real hypersurfaces with parallel Ricci tensor or parallel structure Jacobi operator in a nonflat complex space form (See [4], [6], [10] and [11]). In this paper we investigate real hypersurfaces M in a nonflat complex space form under the condition that respectively denote the Ricci tensor and the structure Jacobi operator of M in .
 Keywords
real hypersurface;structure Jacobi operator;Ricci tensor;Hopf hypersurface;
 Language
English
 Cited by
1.
SOME CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE (A) IN A NONFLAT COMPLEX SPACE FORM,;;

대한수학회보, 2007. vol.44. 1, pp.157-172 crossref(new window)
2.
REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH COMMUTING STRUCTURE JACOBI OPERATOR,;;

대한수학회보, 2008. vol.45. 3, pp.495-507 crossref(new window)
3.
CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL,;

호남수학학술지, 2009. vol.31. 2, pp.185-201 crossref(new window)
4.
COMMUTING STRUCTURE JACOBI OPERATOR FOR HOPF HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS,;;;

대한수학회보, 2009. vol.46. 3, pp.447-461 crossref(new window)
5.
ON THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR OF REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS,;

호남수학학술지, 2010. vol.32. 4, pp.747-761 crossref(new window)
6.
Real Hypersurfaces in Complex Two-plane Grassmannians with F-parallel Normal Jacobi Operator,;;

Kyungpook mathematical journal, 2011. vol.51. 4, pp.395-410 crossref(new window)
1.
Real Hypersurfaces in <i>CP<sup>2</sup></i> and <i>CH<sup>2</sup></i> Equipped With Structure Jacobi Operator Satisfying L<sub>ξ</sub>l =▽<sub>ξ</sub>l, Advances in Pure Mathematics, 2012, 02, 01, 1  crossref(new windwow)
2.
$$\mathfrak D $$ -parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians, Annali di Matematica Pura ed Applicata, 2014, 193, 2, 591  crossref(new windwow)
3.
Real Hypersurfaces in Complex Two-plane Grassmannians with F-parallel Normal Jacobi Operator, Kyungpook mathematical journal, 2011, 51, 4, 395  crossref(new windwow)
4.
Real hypersurfaces in complex two-plane grassmannians with parallel structure Jacobi operator, Acta Mathematica Hungarica, 2009, 122, 1-2, 173  crossref(new windwow)
5.
REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH 𝔇⊥-PARALLEL STRUCTURE JACOBI OPERATOR, International Journal of Mathematics, 2011, 22, 05, 655  crossref(new windwow)
6.
CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL, Honam Mathematical Journal, 2009, 31, 2, 185  crossref(new windwow)
7.
REAL HYPERSURFACES OF NON-FLAT COMPLEX SPACE FORMS WITH GENERALIZED ξ-PARALLEL JACOBI STRUCTURE OPERATOR, Glasgow Mathematical Journal, 2016, 58, 03, 677  crossref(new windwow)
8.
ON FINSLER MANIFOLDS WHOSE TANGENT BUNDLE HAS THE g-NATURAL METRIC, International Journal of Geometric Methods in Modern Physics, 2011, 08, 07, 1593  crossref(new windwow)
9.
The structure Jacobi operator and the shape operator of real hypersurfaces in $$\mathbb {C}P^{2}$$ C P 2 and $$\mathbb {C}H^{2}$$ C H 2, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55, 2, 545  crossref(new windwow)
10.
Real Hypersurfaces in Complex Two-Plane Grassmannians with GTW Reeb Lie Derivative Structure Jacobi Operator, Mediterranean Journal of Mathematics, 2016, 13, 3, 1263  crossref(new windwow)
11.
Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians, Czechoslovak Mathematical Journal, 2015, 65, 2, 569  crossref(new windwow)
12.
Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster $$\mathfrak{D}^ \bot$$-parallel structure Jacobi operator, Open Mathematics, 2014, 12, 12  crossref(new windwow)
13.
Real Hypersurfaces of Nonflat Complex Projective Planes Whose Jacobi Structure Operator Satisfies a Generalized Commutative Condition, International Journal of Mathematics and Mathematical Sciences, 2016, 2016, 1  crossref(new windwow)
14.
Real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator is of Codazzi type, Acta Mathematica Hungarica, 2009, 125, 1-2, 141  crossref(new windwow)
15.
ON THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR OF REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS, Honam Mathematical Journal, 2010, 32, 4, 747  crossref(new windwow)
 References
1.
J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141

2.
T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), no. 2, 481-499 crossref(new window)

3.
E. H. Kang and U-H. Ki, Real hypersurfaces satisfying ${\Delta}{\xi}$S = 0 of a complex space form, Bull. Korean Math. Soc. 35 (1998), no. 4, 819-835

4.
U-H. Ki, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math. 13 (1989), no. 1, 73-81

5.
U-H. Ki, H. Nakagawa, and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a complex space form, Hiroshima Math. J. 20 (1990), no. 1, 93-102

6.
U. K. Kim, Nonexistence of Ricci-parallel real hypersurfaces in $P_2C\;or\;H_2C$, Bull. Korean Math. Soc. 41 (2004), no. 4, 699-708

7.
S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), no. 2, 245-261

8.
R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut submanifolds (Berkeley, CA, 1994), 233-305, Math. Sci. Res. Inst. Publ., 32, Cambridge Univ. Press, Cambridge, 1997

9.
M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364 crossref(new window)

10.
M. Ortega, J. D. Perez, and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, to appear in Rocky Mountain J. Math

11.
J. D. Perez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ${\xi}$-parallel, Diff. Geom. Appl. 22 (2005), no. 2, 181-188 crossref(new window)

12.
R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506