JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SUPER-REPLICABLE FUNCTIONS N(j1,N) AND PERIODICALLY VANISHING PROPERTY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SUPER-REPLICABLE FUNCTIONS N(j1,N) AND PERIODICALLY VANISHING PROPERTY
Kim, Chang-Heon; Koo, Ja-Kyung;
  PDF(new window)
 Abstract
We find the super-replication formulae which would be a generalization of replication formulae. And we apply the formulae to derive periodically vanishing property in the Fourier coefficients of the Hauptmodul as a super-replicable function.
 Keywords
modular function;Hauptmodul;Thompson series;replicable;super-replicable;
 Language
English
 Cited by
1.
More on super-replication formulae (II), The Ramanujan Journal, 2010, 22, 2, 119  crossref(new windwow)
2.
Modularity of a Ramanujan–Selberg continued fraction, Journal of Mathematical Analysis and Applications, 2016, 438, 1, 373  crossref(new windwow)
 References
1.
D. Alexander, C. Cummins, J. Mckay, and C. Simons, Completely replicable functions, In: Groups, Combinatorics and Geometry, Cambridge Univ. Press (1992), 87-98

2.
R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405-444 crossref(new window)

3.
C. J. Cummins and S. P. Norton, Rational Hauptmoduls are replicable, Canadian J. Math. 47 (1995), no. 6, 1201-1218 crossref(new window)

4.
M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkorper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272 crossref(new window)

5.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, 1983

6.
C. R. Ferenbaugh, The genus-zero problem for n/h-type groups, Duke Math. J. 72 (1993), no. 1, 31-63 crossref(new window)

7.
C. R. Ferenbaugh, Replication formulae for n/h-type Hauptmoduls, J. Algebra 179 (1996), no. 3, 808-837 crossref(new window)

8.
I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer- Griess monster with the modular function J as character, Proc. Nat. Acad. Sci. U. S. A. 81 (1984), no. 10, Phys. Sci., 3256-3260 crossref(new window)

9.
I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the monster, Pure and Applied Mathematics, 134, Academic Press Inc., Boston, MA, 1988

10.
K. J. Hong and J. K. Koo, Generation of class fields by the modular function $j_{1,12}$, Acta Arith. 93 (2000), no. 3, 257-291

11.
N. Ishida and N. Ishii, The equation for the modular curve $X_1$(N) derived from the equation for the modular curve X(N), Tokyo J. Math. 22 (1999), no. 1, 167-175 crossref(new window)

12.
S. J. Kang, Graded Lie superalgebras and the superdimension formula, J. Algebra 204 (1998), no. 2, 597-655 crossref(new window)

13.
S. J. Kang and J. H. Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgrbra, Prod. London Math. Soc. (3) 81 (2000), no. 3, 675-724 crossref(new window)

14.
S. J. Kang, C. H. Kim, J. K. Koo, and Y. T. Oh, Graded Lie superalgebras and superreplicable functions, J. Algebra 285 (2005), no. 2, 531-573 crossref(new window)

15.
C. H. Kim and J. K. Koo, On the genus of some modular curve of level N, Bull. Austral. Math. Soc. 54 (1996), no. 2, 291-297 crossref(new window)

16.
C. H. Kim and J. K. Koo, Generators of function fields of the moldular curves $X_1$(5) and $X_1$(6), (preprint)

17.
C. H. Kim and J. K. Koo, Arithmetic of the modular function $j_{1,8}$, Ramanujan J. 4 (2000), no. 3, 317-338 crossref(new window)

18.
C. H. Kim and J. K. Koo, Generation of Hauptmoduln of ${\Gamma}_1$(7), ${\Gamma}_1$(9) and ${\Gamma}_1$(10), (preprint)

19.
C. H. Kim and J. K. Koo, Self-recursion formulas satisfied by Fourier coefficients of some modular functions, J. Pure Appl. Algebra 160 (2001), no. 1, 53-65 crossref(new window)

20.
C. H. Kim and J. K. Koo, Self-recursion formulas of certain monstrous functions, J. Pure Appl. Algebra 171 (2002), no. 1, 27-40 crossref(new window)

21.
N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics, 97, Springer-Verlag, 1984

22.
M. Koike, On replication formula and Hecke operators, Nagoya University (preprint)

23.
S. Lang, Elliptic Functions, Graduate Texts in Mathematics, 112, Springer-Verlag, 1987

24.
J. Mckay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278 crossref(new window)

25.
T. Miyake, Modular Forms, Springer-Verlag, 1989

26.
A. Neron, Modeles minimaux des varietes abeliennes sur les corps locaux et globaux, Publ. Math. I. H. E. S. 21 (1964), 5-128 crossref(new window)

27.
S. P. Norton, More on moonshine, In: Computational Group Theory, Academic Press (1984), 185-193

28.
R. Rankin, Modular Forms and Functions, Cambridge University Press, 1977

29.
J. P. Serre and J. Tate, Good reduction of abelian varieties, Ann. Math. (2) 88 (1968), 492-517 crossref(new window)

30.
G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971

31.
G. Shimura, On modular forms of half integral weight, Ann. Math. (2) 97 (1973), 440-481 crossref(new window)

32.
J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer-Verlag, 1994