JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEAK SOLUTIONS OF THE EQUATION OF MOTION OF MEMBRANE WITH STRONG VISCOSITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEAK SOLUTIONS OF THE EQUATION OF MOTION OF MEMBRANE WITH STRONG VISCOSITY
Hwang, Jin-Soo; Nakagiri, Shin-Ichi;
  PDF(new window)
 Abstract
We study the equation of a membrane with strong viscosity. Based on the variational formulation corresponding to the suitable function space setting, we have proved the fundamental results on existence, uniqueness and continuous dependence on data of weak solutions.
 Keywords
equation of membrane with strong viscosity;weak solution;variational method;
 Language
English
 Cited by
1.
SOLUTIONS OF QUASILINEAR WAVE EQUATION WITH STRONG AND NONLINEAR VISCOSITY,;;;

대한수학회지, 2011. vol.48. 4, pp.867-885 crossref(new window)
1.
Parameter identification problem for the equation of motion of membrane with strong viscosity, Journal of Mathematical Analysis and Applications, 2008, 342, 1, 125  crossref(new windwow)
2.
SOLUTIONS OF QUASILINEAR WAVE EQUATION WITH STRONG AND NONLINEAR VISCOSITY, Journal of the Korean Mathematical Society, 2011, 48, 4, 867  crossref(new windwow)
 References
1.
H. T. Banks, R. C. Smith, and Y. Wang, Smart Material Structures, Modeling, Estimation and Control, RAM, John Wiley and Sons, Masson, 1996

2.
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Evolution Problems I, Springer-Verlag, 1992

3.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 1977

4.
J. Greenberg, On the existence, uniqueness and stability of equation $P_{{\rho}0}X_{tt}=E(X_x)X_{xx }+;X_{xxt}$, J. Math. Anal. Appl. 25 (1969), 575-591 crossref(new window)

5.
J. Greenberg, R. MacCamy, and V. Mizel, On the existence, uniqueness and stability of equation ${\sigma}(u_x)u_{tt}\;+\;{\lambda}u_{xxt}\;=\;_{{\rho}0}u_{tt}$, J. Math. Mech. 17 (1967/68), 707-728

6.
J. Ha and S. Nakagiri, Existence and regularity of weak solutions for semilinear second order evolution equations, Funcial. Ekvac. 41 (1998), no. 1, 1-24

7.
J. S. Hwang and S. Nakagiri, Optimal control problems for the equation of motion of membrane with strong viscosity, J. Math. Anal. Appl. 321 (2006), no. 1, 327-342 crossref(new window)

8.
K. Kikuchi, An analysis of the nonlinear equation of motion of a vibrating membrane in the space of BV functions, J. Math. Soc. Japan 52 (2000), no. 4, 741-766 crossref(new window)

9.
T. Kobayashi, H. Pecher, and Y. Shibata, On a global in time existence theorem of smooth solutions to nonlinear wave equation with viscosity, Math. Ann. 296 (1993), no.2, 215-234 crossref(new window)

10.
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physis, Second Edition, Applied Mathematical Sciences. Vol. 68, Springer-Verlag, Berlin-Heidelberg-New York, 1997