JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE ZERO-DISTRIBUTION AND THE ASYMPTOTIC BEHAVIOR OF A FOURIER INTEGRAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE ZERO-DISTRIBUTION AND THE ASYMPTOTIC BEHAVIOR OF A FOURIER INTEGRAL
Ki, Ha-Seo; Kim, Young-One;
  PDF(new window)
 Abstract
The zero-distribution of the Fourier integral , where P is a polynomial with leading term and Q an arbitrary polynomial, is described. To this end, an asymptotic formula for the integral is established by applying the saddle point method.
 Keywords
saddle point method;zeros of Fourier integrals;
 Language
English
 Cited by
 References
1.
N. G. Bakhoom, Asymptotic expansions of the function $F_k(x)=\int_{0}^{\infty}e^{-u^k+xu}$du, Proc.London Math. Soc. 35 (1933), 83100

2.
R. P. Boas, Entire Functions, Academic Press, New York, 1954

3.
N. G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197-226 crossref(new window)

4.
W. R. Burwell, Asymptotic expansions of generalized hypergeometric functions, Proc. London Math. Soc. 22 (1923), 57-72 crossref(new window)

5.
T. Craven and G. Csordas, Differential operators of infinite order and the distribution of zeros of entire functions, J. Math. Anal. Appl. 186 (1994), no. 3, 799-820 crossref(new window)

6.
J. Kamimoto, On an integral of Hardy and Littlewood, Kyushu J. Math. 52 (1998), no. 1, 249-263 crossref(new window)

7.
J. Kamimoto, H. Ki, and Y.-O. Kim, On the multiplicities of the zeros of Laguerre-Polya functions, Proc. Amer. Math. Soc. 128 (2000), no. 1, 189-194 crossref(new window)

8.
H. Ki and Y.-O. Kim, A generalization of Newman's result on the zeros of Fourier transforms, Comput. Methods Funct. Theory 2 (2002), no. 2, 449-467

9.
H. Ki and Y.-O. Kim, De Bruijn's question on the zeros of Fourier transforms, J. Anal. Math. 91 (2003), 369-387 crossref(new window)

10.
C. M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61 (1976), no. 2, 245-25 crossref(new window)

11.
G. Polya, On the zeros of an integral function represented by Fourier's integral, Messenger of Math. 52 (1923), 185-188

12.
G. Polya, Uber trigonometrische Integrale mit nur reellen Nullstellen, J. Reine Angew. Math. 158 (1927), 6-18

13.
D. Senouf, Asymptotic and numerical approximations of the zeros of Fourier integrals, SIAM J. Math. Anal. 27 (1996), no. 4, 1102-1128 crossref(new window)