JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM ELEMENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM ELEMENTS
Sung Soo-Hak; Cabrera Manuel Ordonez; Hu Tien-Chung;
  PDF(new window)
 Abstract
A complete convergence theorem for arrays of rowwise independent random variables was proved by Sung, Volodin, and Hu [14]. In this paper, we extend this theorem to the Banach space without any geometric assumptions on the underlying Banach space. Our theorem also improves some known results from the literature.
 Keywords
Banach space valued random elements;complete convergence;rowwise independence;sums of independent random elements;convergence in probability;
 Language
English
 Cited by
1.
COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF RANDOM ELEMENTS,;

대한수학회보, 2010. vol.47. 2, pp.369-383 crossref(new window)
1.
A Note on Complete Convergence for Arrays of Rowwise Independent Banach Space Valued Random Elements, Stochastic Analysis and Applications, 2010, 28, 3, 565  crossref(new windwow)
2.
Some complete convergence results for row sums from arrays of rowwise independent random elements in Rademacher type p Banach spaces, Lobachevskii Journal of Mathematics, 2011, 32, 1, 71  crossref(new windwow)
3.
COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF RANDOM ELEMENTS, Bulletin of the Korean Mathematical Society, 2010, 47, 2, 369  crossref(new windwow)
 References
1.
A. de Acosta, Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probab. 9 (1981), no. 1, 157-161 crossref(new window)

2.
P. Erdos, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286-291 crossref(new window)

3.
A. Gut, Complete convergence, Asymptotic Statistics, In: Proceedings of the Fifth Prague Symposium, September 4-9, 1993, Physica-Verlag, Wutzburg (1994), 237-247

4.
J. Hoffmann-Jorgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186

5.
P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25-31 crossref(new window)

6.
T.-C. Hu, M. Ordonez Cabrera, S. H. Sung, and A. Volodin, Complete convergence for arrays of rowwise independent random variables, Commun. Korean Math. Soc. 18 (2003), no. 2, 375-383 crossref(new window)

7.
T.-C. Hu, A. Rosalsky, D. Szynal, and A. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Anal. Appl. 17 (1999), no. 6, 963-992 crossref(new window)

8.
T.-C. Hu, D. Szynal, and A. Volodin, A note on complete convergence for arrays, Statist. Probab. Lett. 38 (1998), no. 1, 27-31 crossref(new window)

9.
T.-C. Hu and A. Volodin, Addendum to 'A note on complete convergence for arrays', Statist. Probab. Lett. 47 (2000), no. 2, 209-211 crossref(new window)

10.
N. C. Jain, Tail probabilities for sums of independent Banach space valued random variables, Z. Wahrsch. Verw. Gebiete 33 (1975), no. 3, 155-166 crossref(new window)

11.
A. Kuczmaszewska, On some conditions for complete convergence for arrays, Statist. Probab. Lett. 66 (2004), no. 4, 399-405 crossref(new window)

12.
J. Kuelbs and J. Zinn, Some stability results for vector valued random variables, Ann. Probab. 7 (1979), no. 1, 75-84 crossref(new window)

13.
M. Ledoux and M. Talagrand, Probability in Banach spaces, Springer, Berlin, 1991

14.
S. H. Sung, A. Volodin, and T.-C. Hu, More on complete convergence for arrays, Statist. Probab. Lett. 71 (2005), no. 4, 303-311 crossref(new window)

15.
T. Tomacs, Convergence rates in the law of large numbers for arrays of Banach space valued random elements, Statist. Probab. Lett. 72 (2005), no. 1, 59-69 crossref(new window)