JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FEYNMAN INTEGRAL, ASPECT OF DOBRAKOV INTEGRAL, I
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FEYNMAN INTEGRAL, ASPECT OF DOBRAKOV INTEGRAL, I
Im, Man-Kyu; Jefferies, Brian;
  PDF(new window)
 Abstract
This paper is the first in a series in which we consider bilinear integration with respect to measure-valued measure. We use the integration techniques to establish generalized Egorov theorem and Vitali theorem.
 Keywords
measure-valued measure;Dobrakov integral;
 Language
English
 Cited by
 References
1.
J. Diestel and J. J. Uhl Jr., Vector Measures, Math. Surveys No. 15, Amer. Math. Soc., Providence, 1977

2.
N. Dinculeanu, Vector integration and Stochastic integration in Banach spaces, Pure and Applied Mathematics, Wiley-Interscience Publication, 2000

3.
I. Dobrakov, On integration in Banach spaces, I, Czechoslovak Math. J. 20 (95) (1970), 511-536

4.
I. Dobrakov, On integration in Banach spaces, II, Czechoslovak Math. J. 20 (95) (1970), 680-695

5.
I. Dobrakov, On representation of linear oprators on $C_o$(T,X), Czechoslovak Math. J. 21 (96) (1971), 13-30

6.
M. K. Im and B. Jefferies, Bilinear integration for measure valued measure, Preprint, 2005

7.
B. Jefferies, Evolution Processes and the Feynman-Kac Formula, Kluwer Academic Publishers, Dordrecht/Boston/London, 1996

8.
B. Jefferies, Advances and applications of the Feynman integral, Real and stochastic analysis, 239-303, Trends Math., Birkhauser Boston, Boston, MA, 2004

9.
B. Jefferies and S. Okada, Bilinear integration in tensor products, Rocky Mountain J. Math. 28 (1998), no. 2, 517-545 crossref(new window)

10.
B. Jefferies and P. Rothnie, Bilinear integration with positive vector measures, J. Aust. Math. Soc. 75 (2003), no. 2, 279-293 crossref(new window)

11.
I. Kluvanek, Integration Structures, Proc. Centre for Mathematical Analysis 18, Australian Nat. Univ., Canberra, 1988

12.
I. Kluvanek and G. Knowles, Vector Measures and Control Systems, North Holland, Amsterdam, 1976

13.
K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951 crossref(new window)