JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GROUP DETERMINANT FORMULAS AND CLASS NUMBERS OF CYCLOTOMIC FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GROUP DETERMINANT FORMULAS AND CLASS NUMBERS OF CYCLOTOMIC FIELDS
Jung, Hwan-Yup; Ahn, Jae-Hyun;
  PDF(new window)
 Abstract
Let m, n be positive integers or monic polynomials in with n|m. Let be the m-th cyclotomic field and its maximal real subfield, respectively. In this paper we define two matrices whose determinants give us the ratios and with some factors, respectively.
 Keywords
cyclotomic unit;cyclotomic function field;
 Language
English
 Cited by
1.
ON THE RATIO OF RELATIVE CONGRUENCE ZETA FUNCTIONS OF CYCLOTOMIC FUNCTION FIELDS, Journal of the Chungcheong Mathematical Society, 2016, 29, 1, 117  crossref(new windwow)
 References
1.
J. Ahn, S. Choi, and H. Jung, Class number formulas in the form of a product of determinants in function fields, J. Aust. Math. Soc. 78 (2005), no. 2, 227-238 crossref(new window)

2.
S. Galovich and M. Rosen, Units and class groups in cyclotomic function fields, J. Number Theory 14 (1982), no. 2, 156-184 crossref(new window)

3.
K. Girstmair, A recursion formula for the relative class number of the -th cyclotomic field, Abh. Math. Sem. Univ. Hamburg 61 (1991), 131-138 crossref(new window)

4.
H. J ung and J. Ahn, Demjanenko matrix and recursion formula for relative class number over function fields, J. Number theory 98 (2003), no. 1, 55-66 crossref(new window)

5.
H. Jung, S. Bae, and J. Ahn, Determinant formulas for class numbers in function fields, Math. Comp. 74 (2005), no. 250, 953-965 crossref(new window)

6.
R. Kucera, Formulae for the relative class number of an imaginary abelian field in the form of a determinant, Nagoya Math. J. 163 (2001), 167-191

7.
M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), no. 4, 365-378

8.
M. Rosen, Number theory in function fields, Graduate Texts in Mathematics 210, Springer-Verlag, New York, 2002

9.
L. Washington, Introduction to cyclotomic fields. Second edition, Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997

10.
L. Yin, On the index of cyclotomic units in characteristic p and its applications, J. Number Theory 63 (1997), no. 2, 302-324 crossref(new window)

11.
L. Yin, Distributions on a global field, J. Number Theory 80 (2000), no. 1, 154-167 crossref(new window)

12.
L. Yin, Stickelberger ideals and relative class numbers in function fields, J. Number Theory 81 (2000), no. 1, 162-169 crossref(new window)