JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC NORMALITY OF ESTIMATOR IN NON-PARAMETRIC MODEL UNDER CENSORED SAMPLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC NORMALITY OF ESTIMATOR IN NON-PARAMETRIC MODEL UNDER CENSORED SAMPLES
Niu, Si-Li; Li, Qlan-Ru;
  PDF(new window)
 Abstract
Consider the regression model , where: (1) are fixed design points, (2) are independent random errors with mean zero, (3) g() is unknown regression function defined on [0, 1]. Under are censored randomly, we discuss the asymptotic normality of the weighted kernel estimators of g when the censored distribution function is known or unknown.
 Keywords
censored sample;non-parametric regression model;weighted kernel estimator;asymptotic normality;
 Language
English
 Cited by
 References
1.
J. K. Benedetti, On the nonparametric estimation of regression functions, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 2, 248-253

2.
Y. Fan, Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case, J. Multivariate Anal. 33 (1990), no. 1, 72-88 crossref(new window)

3.
A. Foldes and L. Rejto, Strong uniform consistency for nonparametric survival curve estimators from randomly censored data, Ann. Statist. 9 (1981), no. 1, 122-129 crossref(new window)

4.
A. A. Georgiev, Consistent nonparametric multiple regression: the fixed design case, J. Multivariate Anal. 25 (1988), no. 1, 100-110 crossref(new window)

5.
A. A. Georgiev and W. Greblicki, Nonparametric function recovering from noisy observations, J. Statist. Plann. Inference 13 (1986), no. 1, 1-14 crossref(new window)

6.
E. L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc. 53 (1958), 457-481 crossref(new window)

7.
H. Koul, V. Susarla and J. Van Ryzin, Regression analysis with randomly right-censored data, Ann. Statist. 9 (1981), no. 6, 1276-1288 crossref(new window)

8.
B. L. S. Prakasa Rao, Asymptotic theory of statistical inference, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1987

9.
M. B. Priestley and M. T. Chao, Non-parametric function fitting, J. Roy. Statist. Soc. Ser. B 34 (1972), 385-392

10.
G. G. Roussas, Consistent regression estimation with fixed design points under dependence conditions, Statist. Probab. Lett. 8 (1989), no. 1, 41-50 crossref(new window)

11.
G. G. Roussas, L. T. Tran, and D. A. Ioannides, Fixed design regression for time series: asymptotic normality, J. Multivariate Anal. 40 (1992), no. 2, 262-291 crossref(new window)

12.
L. Tran, G. Roussas, S. Yakowitz, and B. T. Van, Fixed-design regression for linear time series, Ann. Statist. 24 (1996), no. 3, 975-991 crossref(new window)

13.
Q. H. Wang, Some convergence properties of weighted kernel estimators of regression functions under random censorship, Acta Math. Appl. Sin. 19 (1996), no. 3, 338-350

14.
L. G. Xue, Strong uniform convergence rates of wavelet estimates of regression function under complete and censored data, Acta Math. Appl. Sin. 25 (2002), no. 3, 430-438