JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ENDPOINT ESTIMATES FOR MULTILINEAR INTEGRAL OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ENDPOINT ESTIMATES FOR MULTILINEAR INTEGRAL OPERATORS
Lanzhe, Liu;
  PDF(new window)
 Abstract
In this paper, the endpoint estimates for some multilinear operators related to certain integral operators are obtained. The operators include Littlewood-Paley operators and Marcinkiewicz operators.
 Keywords
multilinear operator;Littlewood-Paley opeerator;Marcinkiewicz operator;BMO space;Hardy space;Herz space;
 Language
English
 Cited by
 References
1.
J. Alvarez, R. J. Babgy, D. S. Kurtz, and C. Perez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), no. 2, 195-209

2.
W. G. Chen and G. E. Hu, Weak type ($H^{1}$, $L^{1}$) estimate for multilinear singular integral operator, Adv. Math. (China) 30 (2001), no. 1, 63-69

3.
J. Cohen, A sharp estimate for a multilinear singular integral on $R^n$, Indiana Univ. Math. J. 30 (1981), no. 5, 693-702 crossref(new window)

4.
J. Cohen and J. Gosselin, On multilinear singular integral operators on Rn, Studia Math. 72 (1982), no. 3, 199-223

5.
J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integrals, Illinois J. Math. 30 (1986), no. 3, 445-464

6.
R. Coifman and Y. Meyer, Wavelets, Calderon-Zygmund and multilinear operators, Cambridge Studies in Advanced Math. 48, Cambridge University Press, Cambridge, 1997

7.
J. Garcia-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), no. 3, 499-513 crossref(new window)

8.
J. Garcia-Cuerva and M. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, Proc. London Math. Soc. 69 (1994), no. 3, 605-628 crossref(new window)

9.
J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. 16, Amsterdam, 1985

10.
E. Harboure, C. Segovia, and J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of p, Illinois J. Math. 41 (1997), no. 4, 676-700

11.
L. Z. Liu, Weighted weak type ($H^{1}$, $L^{1}$) estimates for commutators of Littlewood-Paley operator, Indian J. of Math. 45 (2003), no. 1, 71-78

12.
L. Z. Liu, Endpoint estimates for multilinear Marcinkiewicz integral operators, East J. Approx. 9 (2003), no. 3, 339-350

13.
L. Z. Liu, Weighted Block-$H^1$ estimates for commutators of Littlewood-Paley operators, Southeast Asian Bull. Math. 27 (2004), no. 5, 833-838

14.
S. Z. Lu and D. C. Yang, The decomposition of the weighted Herz spaces on $R^{n}$ and its applications, Sci. China Ser. A 38 (1995), no. 2, 147-158

15.
S. Z. Lu and D. C. Yang, The weighted Herz type Hardy spaces and its applications, Sci. China Ser. A 38 (1995), no. 6, 662-673

16.
E. M. Stein, Harmonic Analysis: real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993

17.
A. Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Math. 123, Academic Press, New York, 1986

18.
A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), no. 1, 235-243