JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HÖLDER CONVERGENCE OF THE WEAK SOLUTION TO AN EVOLUTION EQUATION OF p-GINZBURG-LANDAU TYPE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HÖLDER CONVERGENCE OF THE WEAK SOLUTION TO AN EVOLUTION EQUATION OF p-GINZBURG-LANDAU TYPE
Lei, Yutian;
  PDF(new window)
 Abstract
The author studies the local convergence of the solution to an evolution equation of p-Ginzburg-Landau type, to the heat flow of the p-harmonic map, when the parameter tends to zero. The convergence is derived by establishing a uniform gradient estimation for the solution of the regularized equation.
 Keywords
convergence;p-Ginzburg-Landau equations;heat flow of p-harmonic map;
 Language
English
 Cited by
 References
1.
F. Bethuel, H. Brezis, and F. Helein, Asymptotics for the minimization of a GinzburgLandau functional, Calc. Var. Partial Differential Equations 1 (1993), 123-138 crossref(new window)

2.
Y. Z. Chen and E. DiBenedetto, Boundary estimates for solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 395 (1989), 102-131

3.
Y. M. Chen, M. C. Hong, and N. Hungerbiihler, Heat flow of p-harmonic maps with values into spheres, Math. Z. 215 (1994), no. 1, 25-35 crossref(new window)

4.
E. DiBenedetto and A. Friedman, Holder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1985), 1-22

5.
S. J. Ding and Z. H. Liu, Holder convergence of Ginzburg-Landau approximations to the harmonic map heat flow, Nonlinear Anal. 46 (2001), no. 6, Ser. A : Theory Methods, 807-816 crossref(new window)

6.
R. Jerrard and H. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998), no. 2, 99-125 crossref(new window)

7.
Y. T. Lei, $C^{1}^{\alpha}$ convergence of a Ginzburg-Landau type minimizer in higher dimensions, Nonlinear Anal. 59 (2004), no. 4, 609-627

8.
F. H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996), no. 4, 323-359 crossref(new window)

9.
J. N. Zhao, Existence and nonexistance of solutions for Ut = div(l${\nabla}$ul$^{p-2}$${\nabla}$u) + f(${\nabla}$u,u,x,t), J. Math. Anal. Appl. 172 (1993), no. 1, 130-146 crossref(new window)