JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CRITICALITY OF CHARACTERISTIC VECTOR FIELDS ON ALMOST COSYMPLECTIC MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CRITICALITY OF CHARACTERISTIC VECTOR FIELDS ON ALMOST COSYMPLECTIC MANIFOLDS
Pak, Hong-Kyun; Kim, Tae-Wan;
  PDF(new window)
 Abstract
Main interest of the present paper is to investigate the criticality of characteristic vector fields on almost cosymplectic manifolds. Killing critical characteristic vector fields are absolute minima. This paper contains some examples of non-Killing critical characteristic vector fields.
 Keywords
critical unit vector field;harmonic map;-holomorphic map;almost cosymplectic manifold;Sasaki metric;
 Language
English
 Cited by
1.
Almost f-Cosymplectic Manifolds, Mediterranean Journal of Mathematics, 2014, 11, 2, 775  crossref(new windwow)
 References
1.
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Matnematlcs, Vol. 509. Springer-Verlag, Berlin-New York, 1976

2.
F. G. B. Brito, Total bending of flows with mean curvature correction, Differential Geom. Appl. 12 (2000), no. 2, 157-163 crossref(new window)

3.
D. Chinea and C. Gonzales, An example of an almost co symplectic homogeneous manifold, Differential geometry, Peniscola 1985, 133-142, Lecture Notes in Math., 1209, Springer, Berlin, 1986 crossref(new window)

4.
D. Chinea, M. de Leon, and J. C. Marrero, Coeffective cohomology on almost cosymplectic manifolds, Bull. Sci. Math. 119 (1995), no. 1, 3-20

5.
L. A. Cordero, M. Fernandez, and M. De Leon, Examples of compact almost contact manifolds admitting neither Sasakian nor co symplectic structures, Atti Sem. Mat. Fis. Univ. Modena 34 (1985/86), no. 1, 43-54

6.
P. Dacho, On almost cosymplectic manifolds with the structure vector field - belonging to the k-nullity distribution, Balkan J. Geom. Appl. 5 (2000), no. 2, 47-60

7.
P. Dacho and Z. Olszak, On conformally flat almost co symplectic manifolds with Kiihlerian leaves, Rend. Sem. Mat. Univ. Politec. Torino 56 (1998), no. 1, 89-103

8.
P. Dombrowski, On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73-88

9.
J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, 50. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983

10.
O. Gil-Medrano, Relationship between volume and energy of vector fields, Differential Geom. Appl. 15 (2001), no. 2, 137-152 crossref(new window)

11.
O. Gil-Medrano and E. Llinares-Fuster, Minimal unit vector fields, Tohoku Math. J. (2) 54 (2002), no. 1, 71-84 crossref(new window)

12.
H. Gluck and W. Ziller, On the volume of a unit vector field on the three sphere, Comment. Math. Helv. 61 (1986), no. 2, 177-192 crossref(new window)

13.
S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382 crossref(new window)

14.
S. S. Ianus and A. M. Pastore, Harmonic maps on contact metric manifolds, Ann. Math. Blaise Pascal 2 (1995), no. 2, 43-53

15.
D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27 crossref(new window)

16.
K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93-103 crossref(new window)

17.
Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250 crossref(new window)

18.
Z. Olszak, On almost cosymplectic manifolds with Kiihlerian leaves, Tensor (N. S.) 46 (1987), 117-124

19.
K. Oshikiri, A remark on minimal foliations, Tohoku Math. J. (2) 33 (1981), no. 1, 133-137 crossref(new window)

20.
H. K. Pak and T. W. Kim, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841-846 crossref(new window)

21.
G. Pitis, Foliations and submanifolds of a class of contact manifolds, C. R. Acad. Sci. Paris Ser. I Math. 310 (1990), no. 4, 197-202

22.
P. Rukimbira, Criticality of K-contact vector fields, J. Geom. Phys. 40 (2002), no. 3-4, 209-214 crossref(new window)

23.
Ph. Tondeur, Foliations on Riemannian manifolds, Universitext. Springer-Verlag, New York, 1988

24.
C. M. Wood, On the energy of a unit vector field, Geom. Dedicata 64 (1997), no. 3, 319-330 crossref(new window)

25.
K. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Pure and Applied Mathematics, No. 16. Marcel Dekker, Inc., New York, 1973