JOURNAL BROWSE
Search
Advanced SearchSearch Tips
∏-COHERENT DIMENSIONS AND ∏-COHERENT RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
∏-COHERENT DIMENSIONS AND ∏-COHERENT RINGS
Mao, Lixin;
  PDF(new window)
 Abstract
R is called a right ring in case every finitely generated torsion less right R-module is finitely presented. In this paper, we define a dimension for rings, called dimension, which measures how far away a ring is from being . This dimension has nice properties when the ring in question is coherent. In addition, we study some properties of rings in terms of preenvelopes and precovers.
 Keywords
dimension; ring;FGT-injective module;FGT-flat module;FGT-injective dimension;preenvelope;precover;
 Language
English
 Cited by
1.
PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS,;

대한수학회논문집, 2010. vol.25. 4, pp.497-510 crossref(new window)
1.
PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS, Communications of the Korean Mathematical Society, 2010, 25, 4, 497  crossref(new windwow)
2.
FGT-injective dimensions of Π-coherent rings and almost excellent extension, Proceedings - Mathematical Sciences, 2010, 120, 2, 149  crossref(new windwow)
 References
1.
L. Bican, R. EI Bashir, and E. E. Enochs, All modules have fiat covers, Bull. London Math. Soc. 33 (2001), 385-390 crossref(new window)

2.
L. Bonami, On the Structure of Skew Group Rings, Algebra Berichte 48, Verlag Reinhard Fisher, Munchen, 1984

3.
V. Camillo, Coherence for polynomial rings, J. Algebra 132 (1990), 72-76 crossref(new window)

4.
F. C. Chen, J. Y. Tang, Z. Y. Huang, and M. Y. Wang, ${\Pi}$-coherent rings and FGTinjective dimension, Southeast Asian Bulletin Math. 19 (1995), no. 3, 105-112

5.
N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459-1470 crossref(new window)

6.
N. Q. Ding and J. L. Chen, Relative coherence and preenvelopes, Manuscripta Math; 81 (1993), 243-262 crossref(new window)

7.
P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), no. 1,41-51 crossref(new window)

8.
E. E. Enochs, A note on absolutely pure modules, Canad. Math. Bull. 19 (1976), 361-362 crossref(new window)

9.
E. E. Enochs, Injective and fiat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209 crossref(new window)

10.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin-New York, 2000

11.
S. Jain, Flat and F P-injectivity, Proc. Amer. Math. Soc. 41 (1973), 437-442 crossref(new window)

12.
M. F. Jones, Flatness and f-projectivity of torsion-free modules and injective modules, Lecture Notes in Math. 951 (1982), 94-116 crossref(new window)

13.
T. Y. Lam, Lectures on Modules and Rings; Springer-Verlag, New York-HeidelbergBerlin, 1999

14.
Z. K. Liu, Excellent extensions and homological dimensions, Comm. Algebra 22 (1994), no. 5, 1741-1745 crossref(new window)

15.
B. Madox, Absolutely pure modules, Proc. Amer. Math. Soc. 18 (1967), 155-158 crossref(new window)

16.
L. X. Mao and N. Q. Ding, FP-projective dimensions, Comm. Algebra 33 (2005), no. 4, 1153-1170 crossref(new window)

17.
K. R. Pinzon, Absolutely pure modules, University of Kentucky, Ph. D thesis, 2005

18.
J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979

19.
B. Stenstrom, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), 323-329 crossref(new window)

20.
J. Trlifaj, Covers, Envelopes, and Cotorsion Theories, Lecture notes for the workshop, 'Homological Methods in Module Theory'. Cortona, September 10-16, 2000

21.
M. Y. Wang, Some studies on ${\Pi}$-coherent rings, Proc. Amer. Math. Soc. 119 (1993), 71-76 crossref(new window)

22.
J. Xu, Flat Covers of Modules, Lecture Notes in Math. 1634, Springer-Verlag: BerlinHeidelberg-New York, 1996