JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A CHANGE OF SCALE FORMULA FOR CONDITIONAL WIENER INTEGRALS ON CLASSICAL WIENER SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A CHANGE OF SCALE FORMULA FOR CONDITIONAL WIENER INTEGRALS ON CLASSICAL WIENER SPACE
Yoo, Il; Chang, Kun-Soo; Cho, Dong-Hyun; Kim, Byoung-Soo; Song, Teuk-Seob;
  PDF(new window)
 Abstract
Let $X_k(x)
 Keywords
change of scale formula;conditional analytic Feynman integral;conditional analytic Wiener integral;conditional Wiener integral;
 Language
English
 Cited by
1.
A CHANGE OF SCALE FORMULA FOR ENERALIZED WIENER INTEGRALS,;;;

충청수학회지, 2011. vol.24. 3, pp.517-528
2.
A CHANGE OF SCALE FORMULA FOR GENERALIZED WIENER INTEGRALS II,;;;

충청수학회지, 2013. vol.26. 1, pp.111-123 crossref(new window)
1.
A CHANGE OF SCALE FORMULA FOR GENERALIZED WIENER INTEGRALS II, Journal of the Chungcheng Mathematical Society, 2013, 26, 1, 111  crossref(new windwow)
2.
SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS, Journal of the Korean Mathematical Society, 2016, 53, 3, 709  crossref(new windwow)
3.
Analogues of conditional Wiener integrals and their change of scale transformations on a function space, Journal of Mathematical Analysis and Applications, 2009, 359, 2, 421  crossref(new windwow)
4.
Integral Transforms on a Function Space with Change of Scales Using Multivariate Normal Distributions, Journal of Function Spaces, 2016, 2016, 1  crossref(new windwow)
 References
1.
R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954), 623-627 crossref(new window)

2.
R. H. Cameron and W. T. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130-137 crossref(new window)

3.
R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Math. 798, Springer-Verlag, New York (1980), 18-67

4.
R. H. Cameron and D. A. Storvick, Relationships between the Wiener integral and the analytic Feynman integral, Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 117-133

5.
R. H. Cameron and D. A. Storvick, Change of scale formulas for Wiener integral, Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 105-115

6.
K. S. Chang, G. W. Johnson, and D. L. Skoug, Functions in the Fresnel class, Proc. Amer. Math. Soc. 100 (1987), no. 2, 309-318 crossref(new window)

7.
D. M. Chung and D. L. Skoug, Conditional analytic Feynman integrals and a related Schrodinger integral equation, SIAM J. Math. Anal. 20 (1989), no. 4, 950-965 crossref(new window)

8.
C. Park and D. L. Skoug, Conditional Wiener integrals II, Pacific J. Math. 167 (1995), no. 2, 293-312 crossref(new window)

9.
C. Park and D. L. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), no. 2, 381-394 crossref(new window)

10.
I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, Internat. J. Math. Math. Sci. 17 (1994), no. 2, 239-247 crossref(new window)

11.
I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces II, J. Korean Math. Soc. 31 (1994), no. 1, 115-129

12.
I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), no. 1, 371-389 crossref(new window)

13.
I. Yoo and G. J. Yoon, Change of scale formulas for Yeh-Wiener integrals, Commun. Korean Math. Soc. 6 (1991), no. 1, 19-26