JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ANTI-SYMPLECTIC INVOLUTIONS ON NON-KÄHLER SYMPLECTIC 4-MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ANTI-SYMPLECTIC INVOLUTIONS ON NON-KÄHLER SYMPLECTIC 4-MANIFOLDS
Cho, Yong-Seung; Hong, Yoon-Hi;
  PDF(new window)
 Abstract
In this note we construct an anti-symplectic involution on the non-, symplectic 4-manifold which is constructed by Thurston and show that the quotient of the Thurston`s 4-manifold is not symplectic. Also we construct a non-, symplectic 4-manifold using the Gomph`s symplectic sum method and an anti-symplectic involution on the non-, symplectic 4-manifold.
 Keywords
non-Kahler symplectic 4-manifold;anti-symplectic involution;Dolgachev surface;quotient manifold;
 Language
English
 Cited by
 References
1.
S. Akbulut, On quotients of complex surfaces under complex conjugation, J. Reine. Angew. Math. 447 (1994), 83-90

2.
W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Springer, Heidelberg, 1984

3.
Y. S. Cho, Cyclic group actions on gauge theory, Diff. Geom. and its Applications 6 (1996), no. 1, 87-99 crossref(new window)

4.
Y. S. Cho and Y. H. Hong, Cyclic group actions on 4-manifold, Acta. Math. Hung. 94 (2002), no. 4, 333-350 crossref(new window)

5.
Y. S. Cho and Y. H. Hong, Seiberg-Witten invariants and (anti-)symplectic involutions, Glasg. Math. J. 45 (2003), no. 3, 401-413 crossref(new window)

6.
R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527-595 crossref(new window)

7.
R. E. Gompf and T. S. Mrowka, Irreducible 4-manifolds need not be complex, Ann. of Math. (2) 138 (1993), no. 1, 61-111 crossref(new window)

8.
R. E. Gompf and A. I. Stipsciz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20. American Mathematical Society, Providence, RI, 1999

9.
R. Kirby, Problems in low-dimensional topology, Edited by Rob Kirby. AMS/IP Stud. Adv. Math., 2.2, Geometric topology (Athens, GA, 1993), 35-473, Amer. Math. Soc., Providence, RI, 1997

10.
D. Mcduff, Examples of simply-connected symplectic non-Kahlerian manifolds, J. Differential Geom. 20 (1984), no. 1, 267-277

11.
B. Ozbagci and A. I. Stipsciz, Noncomplex smooth 4-manifolds with genus-2 Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3125-3128 crossref(new window)

12.
D. Salamon, Spin geometry and Seiberg-Witten invariants, University of Warwick, October 2, 1995

13.
P. Shanahan, The Atiyah-Singer index theorem, An introduction. Lecture Notes in Mathematics, 638. Springer, Berlin, 1978

14.
A. I. Stipsciz, Manifolds not containing Gomph nuclei, Acta Math. 83 (1998), 107-113 crossref(new window)

15.
W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467-468 crossref(new window)

16.
S. Wang, Gauge theory and involutions, Oxford University Thesis (1990)