JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BLOW-UP RATE ESTIMATES FOR A SYSTEM OF REACTION-DIFFUSION EQUATIONS WITH ABSORPTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BLOW-UP RATE ESTIMATES FOR A SYSTEM OF REACTION-DIFFUSION EQUATIONS WITH ABSORPTION
Xiang, Zhaoyin; Chen, Qiong; Mu, Chunlai;
  PDF(new window)
 Abstract
In this note, we consider a system of two reaction-diffusion equations with absorption, under homogeneous Dirichlet boundary. Using scaling methods, we establish the blow-up rate estimates.
 Keywords
reaction-diffusion systems;absorption;blowup rate estimates;
 Language
English
 Cited by
1.
Blow-up rates for degenerate parabolic equations coupled via equation and boundary, Dynamical Systems, 2011, 26, 3, 261  crossref(new windwow)
2.
Blowup Analysis for a Nonlocal Diffusion Equation with Reaction and Absorption, Journal of Applied Mathematics, 2012, 2012, 1  crossref(new windwow)
 References
1.
J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Applied mathematical Sciences, 83, Springer-Verlag, New York, 1989

2.
N. Bedjaoui and Ph. Souplet,Critical blowup exponents for a system of reaction-diffusion equations with absorption, Z. Angew. Math. Phys. 53 (2002), no. 2, 197-210 crossref(new window)

3.
M. Chlebik and M. Fila, From critical exponents to blow-up rates for parabolic problems, Rend. Mat. Appl. (7) 19 (1999), no. 4, 449-470

4.
K. Deng, Blow-up rates for parabolic systems, Z. Angew. Math. Phys. 47 (1996), no. 1, 132-143 crossref(new window)

5.
M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differentail Equations 89 (1991), no. 1, 176-202 crossref(new window)

6.
M. Fila and P. Quittner, The blow-up rate for a semilinear parabolic systems, J. Math. Anal. Appl. 238 (1999), no. 2, 468-476 crossref(new window)

7.
M. Fila and Ph. Souplet, The blow-up rate for semilinear parabolic problems on general domains, NoDEA Nonlinear Differentail Equations Appl. 8 (2001), no. 4, 473-480 crossref(new window)

8.
S.-C. Fu and J.-S. Guo, Blow-up for a semilinear reaction-diffusion system coupled in both equations ans boundary conditions, J. Math. Anal. Appl. 296 (2002), no. 1, 458-475

9.
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Paritial Differentail Equations 6 (1981), no. 8, 883-901 crossref(new window)

10.
B. Hu, Remarks on the blowup estimate for solutions of the heat equation with a non-linear boundary condition, Differential Integral Equations 9 (1996), no. 5, 891-901

11.
B. Hu and H. M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. 346 (1994), no. 1, 117-135 crossref(new window)

12.
K. I. Kim and Z. G. Lin, Blowup estimates for a parabolic system in a three-species cooperating model, J. Math. Anal. Appl. 293 (2004), no. 2, 663-676 crossref(new window)

13.
O. A. Lady-zenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Providence, 1967

14.
H. A. Levine, A Fujita type global existence - global nonexistence theorem for a weakly coupled system of reaction-diffusion equations, Z. Angew. Math. Phys. 42 (1991), no. 3, 408-430 crossref(new window)

15.
Z. G. Lin, Blowup estimates for a mutualistic model in ecology, Electron. J. Qual. Theory Differ. Equ. (2002), no. 8, 1-14

16.
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992

17.
F. Rothe, Global Solutions of Reaction-diffusion Systems, Lecture Notes in Mathematics, 1072, Springer-Verlag, Berlin, 1984

18.
S. Snoussi and S. Tayachi, Global existence, asymptotic behavior and self-similar solutions for a class of semilinear parabolic systems, Nonlinear Anal. 48 (2002), no. 1, Ser. A : Theory Methods, 13-35 crossref(new window)

19.
P. Souplet and S. Tayachi, Optimal condition for non-simultaneous blow-up in a reaction-diffusion system, J. Math. Soc. Japan 56 (2004), no. 2, 571-584 crossref(new window)

20.
M. X. Wang, Blow-up rate estimates for semilinear parabolic systems, J. Differentail Equations 170 (2001), no. 2, 317-324 crossref(new window)