JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ENDPOINT ESTIMATES FOR MAXIMAL COMMUTATORS IN NON-HOMOGENEOUS SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ENDPOINT ESTIMATES FOR MAXIMAL COMMUTATORS IN NON-HOMOGENEOUS SPACES
Hu, Guoen; Meng, Yan; Yang, Dachun;
  PDF(new window)
 Abstract
Certain weak type endpoint estimates are established for maximal commutators generated by operators and functions for under the condition that the underlying measure only satisfies some growth condition, where the kernels of operators only satisfy the standard size condition and some type regularity condition, and are the spaces of Orlicz type satisfying that
 Keywords
-Zygmund operator;;maximal commutator;endpoint estimate;
 Language
English
 Cited by
 References
1.
G. Hu, Y. Meng, and D. Yang, Multilinear commutators of singular integrals with non doubling measures, Integral Equations Operator Theory 51 (2005), no. 2, 235-255 crossref(new window)

2.
G. Hu, Y. Meng, and D. Yang, Estimates for maximal singular integral operators in non-homogeneous spaces, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 2, 351-364 crossref(new window)

3.
G. Hu, Y. Meng, and D. Yang, Endpoint estimate for maximal commutators with non-doubling measures, Acta Math. Sci. Ser. B Engl. Ed. 26 (2006), no. 2, 271-280

4.
G. Hu, Y. Meng, and D. Yang, Boundedness of some maximal commutators in Hardy-type spaces with non-doubling measures, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 6, 1129-1148 crossref(new window)

5.
F. Nazarov, S. Treil, and A. Volberg, Accretive system Tb-theorems on nonhomogeneous spaces, Duke Math. J. 113 (2002), no. 2, 259-312 crossref(new window)

6.
F. Nazarov, S. Treil, and A. Volberg, Tb-theorem on nonhomogeneous spaces, Acta Math. 190 (2003), 151-239 crossref(new window)

7.
J. Orobitg and C. Perez, Ap weights for nondoubling measures in $R^n$ and applications, Trans. Amer. Math. Soc. 354 (2002), no. 5, 2013-2033 crossref(new window)

8.
C. Perez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. 65 (2002), no. 3, 672-692 crossref(new window)

9.
X. Tolsa, BMO, $H^1$, and Calderon-Zygmund operators for non doubling measures, Math. Ann. 319 (2001), no. 1, 89-149 crossref(new window)

10.
X. Tolsa, A T(1) theorem for non-doubling measures with atoms, Proc. London Math. Soc. (3) 82 (2001), no. 1, 195-228 crossref(new window)

11.
X. Tolsa, Littlewood-Paley theory and the T(1) theorem with non-doubling measures, Adv. Math. 164 (2001), no. 1, 57-116 crossref(new window)

12.
X. Tolsa, The space $H^1$ for nondoubling measures in terms of a grand maximal operator, Trans. Amer. Math. Soc. 355 (2003), no. 1, 315-348 crossref(new window)

13.
X. Tolsa, Painleve's problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003), 105-149 crossref(new window)

14.
J. Verdera, The fall of the doubling condition in Calderon-Zygmund theory, Publ. Mat. Vol. Extra (2002), 275-292