JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LIL FOR KERNEL ESTIMATOR OF ERROR DISTRIBUTION IN REGRESSION MODEL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LIL FOR KERNEL ESTIMATOR OF ERROR DISTRIBUTION IN REGRESSION MODEL
Niu, Si-Li;
  PDF(new window)
 Abstract
This paper considers the problem of estimating the error distribution function in nonparametric regression models. Sufficient conditions are given under which the kernel estimator of the error distribution function based on nonparametric residuals satisfies the law of iterated logarithm.
 Keywords
law of iterated logarithm;kernel estimation;nonparametric residuals;empirical process;
 Language
English
 Cited by
 References
1.
M. V. Boldin, An estimate of the distribution of the noise in an autoregressive scheme, Teor. Veroyatnost. i Primenen. 27 (1982), no. 4, 805-810

2.
F. Cheng, Error Density and Distribution estimation in nonparametric regression, Statist. Probab. Lett. 59 (2002), no. 3, 257-270 crossref(new window)

3.
M. Csorgo and P. Revesz, Strong approximations in probability and statistics, Probability and Mathematical Statistics. Academic Press, Inc., New York-London, 1981

4.
W. Hardle, P. Janassen, and R. Serfling, Strong uniform consistency rates for estimators of conditional functionals, Ann. Statist. 16 (1988), no. 4, 1428-1449 crossref(new window)

5.
H. L. Koul, Some convergence theorems for ranks and weighted empirical cumulatives, Ann. Math. Statist. 41 (1970), 1768-1773 crossref(new window)

6.
H. L. Koul, Behavior of robust estimators in the regression model with dependent errors, Ann. Statist. 5 (1977), no. 4, 681-699 crossref(new window)

7.
H. L. Koul, A weak convergence result useful in robust autoregression, J. Statist. Plann. Inference 29 (1991), no. 3, 291-308 crossref(new window)

8.
H. L. Koul, Weighted empiricals and linear models, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 21. Institute of Mathematical Statistics, Hayward, CA, 1992

9.
H. L. Koul, Asymptotics of some estimators and sequential residual empiricals in nonlinear time series, Ann. Statist. 24 (1996), no. 1, 380-404 crossref(new window)

10.
H. L. Koul and M. Osiander, Weak convergence of randomly weighted dependent residual empiricals with applications to autoregression, Ann. Statist. 22 (1994), no. 1, 540-562 crossref(new window)

11.
R. M. Loynes, The empirical distribution function of residuals from generalised regression, Ann. Statist. 8 (1980), no. 2, 285-298 crossref(new window)

12.
E. Mammen, Empirical process of residuals for high-dimensional linear models, Ann. Statist. 24 (1996), no. 1, 307-335 crossref(new window)

13.
E. A. Nadaraya, On estimating regression, Theory Probab. Appl. 9 (1964), 141-142 crossref(new window)

14.
S. Portnoy, Asymptotic behavior of the empiric distribution of M-estimated residuals from a regression model with many parameters, Ann. Statist. 14 (1986), no. 3, 1152-1170 crossref(new window)