JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPECTRAL AREA ESTIMATES FOR NORMS OF COMMUTATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPECTRAL AREA ESTIMATES FOR NORMS OF COMMUTATORS
Cho, Muneo; Nakazi, Takahiko;
  PDF(new window)
 Abstract
Let A and B be commuting bounded linear operators on a Hilbert space. In this paper, we study spectral area estimates for norms of when A is subnormal or p-hyponormal.
 Keywords
subnormal;p-hyponormal;Putnam inequality;
 Language
English
 Cited by
 References
1.
H. Alexander, Projections of polynomial hulls, J. Funct. Anal. 13 (1973), 13-19 crossref(new window)

2.
W. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), no. 3, 208-233 crossref(new window)

3.
M. Cho and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2435-2440 crossref(new window)

4.
F. Hansen, An operator inequality, Math. Ann. 246 (1979/80), no. 3, 249-250 crossref(new window)

5.
T. Nakazi, Complete spectral area estimates and self-commutators, Michigan Math. J. 35 (1988), no. 3, 435-441 crossref(new window)

6.
Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153-162 crossref(new window)

7.
C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330 crossref(new window)

8.
D. Sarason, Generalized interpolation in $H^{\infty}$, Trans. Amer. Math. Soc. 127 (1967), 179-203 crossref(new window)

9.
B. Sz.-Nagy and C. Foias, Harmonic Analysis Of Operators On Hilbert Space, American Elsevier, New York, 1970

10.
A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integral Equations Operator Theory 33 (1999), 221-230 crossref(new window)

11.
A. Uchiyama, Inequalities of Putnam and Berger-Shaw for p-quasihyponormal operators, Integral Equations Operator Theory 34 (1999), no. 2, 91-106 crossref(new window)

12.
T. Yoshino, Subnormal operators with a cyclic vector, Tohoku Math. (2) 21 (1969), 47-55 crossref(new window)