JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPECTRAL LOCALIZING SYSTEMS THAT ARE t-SPLITTING MULTIPLICATIVE SETS OF IDEALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPECTRAL LOCALIZING SYSTEMS THAT ARE t-SPLITTING MULTIPLICATIVE SETS OF IDEALS
Chang, Gyu-Whan;
  PDF(new window)
 Abstract
Let D be an integral domain with quotient field K, A a nonempty set of height-one maximal t-ideals of D, F$({\Lambda})
 Keywords
spectral localizing system;t-splitting set of ideals;weakly Krull domain;generalized weakly factorial domain;
 Language
English
 Cited by
1.
POWER SERIES RINGS OVER PRÜFER v-MULTIPLICATION DOMAINS, Journal of the Korean Mathematical Society, 2016, 53, 2, 447  crossref(new windwow)
 References
1.
D. D. Anderson, D. F. Anderson, and M. Zafrullah, The ring $D+XD_S[X]$ and t-splitting sets, Arab. J. Sci. Eng. Sect. C Theme Issues 26 (2001), no. 1, 3-16

2.
D. D. Anderson, J. L. Mott, and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. B (7) 6 (1992), no. 3, 613-630

3.
D. D. Anderson and M. Zafrullah, Weakly factorial domains and groups of divisibility, Proc. Amer. Math. Soc. 109 (1990), no. 4, 907-913 crossref(new window)

4.
D. F. Anderson, G. W. Chang, and J. Park, Generalized weakly factorial domains, Houston Math. J. 29 (2003), no. 1, 1-13

5.
J. T. Arnold and J. W. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra 18 (1971), 254-263 crossref(new window)

6.
G. W. Chang, Weakly factorial rings with zero divisors, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001

7.
G. W. Chang, T. Dumitrescu, and M. Zafrullah, t-splitting sets in integral domains, J. Pure Appl. Algebra 187 (2004), no. 1-3, 71-86 crossref(new window)

8.
G. W. Chang, T. Dumitrescu, and M. Zafrullah, t-splitting multiplicative sets of ideals in integral domains, J. Pure Appl. Algebra 197 (2005), no. 1-3, 239-248 crossref(new window)

9.
S. El Baghdadi, On a class of Prufer v-multiplication domains, Comm. Algebra 30 (2002), no. 8, 3723-3742 crossref(new window)

10.
M. Fontana, J. A. Huckaba, and I. J. Papick, Prufer domains, Marcel Dekker, Inc., New York, 1997

11.
S. Gabelli, On Nagata's theorem for the class group, II, Lecture Notes in Pure and Appl. Math., Vol 206, Marcel Dekker, New York, 1999

12.
R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972

13.
R. Gilmer and W. Heinzer, Primary ideals with finitely generated radical in a commutative ring, Manuscripta Math. 78 (1993), no. 2, 201-221 crossref(new window)

14.
E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), no. 8, 1955-1969 crossref(new window)

15.
B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_N_v$, J. Algebra 123 (1989), no. 1, 151-170 crossref(new window)

16.
I. Kaplansky, Commutative Rings, Revised Ed., The University of Chicago Press, Chicago, Ill.-London, 1974

17.
K. A. Loper, A class of Prufer domains that are similar to the ring of entire functions, Rocky Mountain J. Math. 28 (1998), no. 1, 267-285 crossref(new window)