JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE BEHAVIOR OF THE TWISTED p-ADIC (h, q)-L-FUNCTIONS AT s
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE BEHAVIOR OF THE TWISTED p-ADIC (h, q)-L-FUNCTIONS AT s
Simsek, Yilmaz;
  PDF(new window)
 Abstract
The main result of this paper is to construct the derivative twisted p-adic (h, q)-L-functions at s
 Keywords
q-Bernoulli numbers and polynomials;twisted q-Bernoulli numbers and polynomials;q-zeta function;p-adic L-function;twisted q-zeta function;twisted q-L-functions;q-Volkenborn integral;
 Language
English
 Cited by
1.
THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS,;

대한수학회보, 2010. vol.47. 6, pp.1181-1188 crossref(new window)
1.
On the behavior of two variable twisted -adic Euler -functions, Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 12, e942  crossref(new windwow)
2.
Multiple two-variable p-adic q-L-function and its behavior at s = 0, Russian Journal of Mathematical Physics, 2008, 15, 4, 447  crossref(new windwow)
3.
On ( h , q ) -Daehee numbers and polynomials, Advances in Difference Equations, 2015, 2015, 1  crossref(new windwow)
4.
THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS, Bulletin of the Korean Mathematical Society, 2010, 47, 6, 1181  crossref(new windwow)
5.
A Note on the Multiple Twisted Carlitz's Type -Bernoulli Polynomials, Abstract and Applied Analysis, 2008, 2008, 1  crossref(new windwow)
6.
On Interpolation Functions of the Generalized Twisted -Euler Polynomials, Journal of Inequalities and Applications, 2009, 2009, 1, 946569  crossref(new windwow)
 References
1.
J. Diamond, The p-adic log gamma function and p-adic Euler constant, Trans. Amer. Math. Soc. 233 (1977), 321-337 crossref(new window)

2.
J. Diamond, On the values of p-adic L-functions at positive integers, Acta Arith. 35 (1979), no. 3, 223-237

3.
B. Ferrero and R. Greenberg, On the behavior of p-adic L-functions at s = 0, Invent. Math. 50 (1978), no. 1, 91-102 crossref(new window)

4.
G. J. Fox, A p-adic L-function of two variables, Enseign. Math. (2) (2000), no. 3-4, 225-278

5.
K. Iwasawa, Lectures on p-adic L-functions, Princeton Univ. Press 1972

6.
T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), no. 2, 21-26

7.
T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), no. 1, 73-86 crossref(new window)

8.
T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), no. 1-3, 179-187 crossref(new window)

9.
T. Kim, q-Volkenborn integration, Russ. J. Math Phys. 9 (2002), no. 3, 288-299

10.
T. Kim, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli Polynomials, Russ. J. Math Phys. 10 (2003), no. 1, 91-98

11.
T. Kim, q-Riemann zeta function, Int. J. Math. Sci. (2004), no. 9-12, 599-605

12.
T. Kim, A note on Dirichlet L-series, Proc. Jangjeon Math. Soc. 6 (2003), no. 2, 161-166

13.
T. Kim, Introduction to Non-Archimedian Analysis, Kyo Woo Sa (Korea), 2004

14.
T. Kim, p-adic q-integrals associated with the Changhee-Barnes' q-Bernoulli Polynomials, Integral Transform. Spec. Funct. 15 (2004), no. 5, 415-420 crossref(new window)

15.
T. Kim, A new approach to q-zeta function, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 157-162

16.
T. Kim, Power series and asymptotic series associated with the q-analogue of two-variable p-adic L-function, Russ. J. Math Phys. 12 (2005), no. 2, 186-196

17.
T. Kim, A new approach to p-adic q-L-functions, Adv. Stud. Contemp. Math. 12 (2006), no. 1, 61-72

18.
T. Kim and S.-H. Rim, A note on two variable Dirichlet L-function, Adv. Stud. Contemp. Math. 10 (2005), no. 1, 1-6

19.
T. Kim, L. C. Jang, S.-H. Rim, and H. K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13-21

20.
N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), no. 2, 455-468 crossref(new window)

21.
N. Koblitz, p-adic Analysis: A short course on recent work, London Math. Soc. Lecture Note Ser., Vol. 46, 1980

22.
T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte. I: Einfuhrung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328-339

23.
K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985) 113-125

24.
Y. Simsek, On q-analogue of the twisted L-functions and q-twisted Bernoulli numbers, J. Korean Math. Soc. 40 (2003), no. 6, 963-975 crossref(new window)

25.
Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 205-218

26.
Y. Simsek, q-analogue of the twisted l-series and q-twisted Euler numbers, J. Number Theory 110 (2005), no. 2, 267-278 crossref(new window)

27.
Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series, J. Math. Anal. Appl. 318 (2006), no. 1, 333-351 crossref(new window)

28.
Y. Simsek, Twisted (h; q)-Bernoulli numbers and polynomials related to twisted (h; q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2) (2006), 790-804 crossref(new window)

29.
Y. Simsek, Twisted p-adic (h; q)-L-functions, submitted

30.
Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput. 187 (1) (2007), 466-473 crossref(new window)

31.
Y. Simsek, D. Kim, and S.-H. Rim, On the two-variable Dirichlet q-L-series, Adv. Stud. Contemp. Math. 10 (2005), no. 2, 131-142

32.
H. M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math Phys. 12 (2005), no. 2, 241-268

33.
L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, Inc. (2st Ed.), 1997

34.
P. T. Young, On the behavior of some two-variable p-adic L-function, J. Number Theory 98 (2003), no. 1, 67-88 crossref(new window)